1,609 research outputs found

    The triple junction hull: Tools for grain boundary network design

    Get PDF
    Grain boundary engineering (GBE) studies have demonstrated significant materials properties enhancements by modifying the populations and connectivity of different types of grain boundaries within the grain boundary network. In order to facilitate rigorous design and optimization of grain boundary networks, we develop theoretical tools that are based upon a spectral representation of grain boundary network statistics. We identify the connection between a local length scale, embodied by triple junctions, and a global length scale, associated with the grain boundary network configuration as a whole. We define the local state space for triple junctions, A(3)A(3), and enumerate its symmetries. We further define the design space for grain boundary networks, View the MathML sourceMH(3), characterize its important geometric properties, and discuss how its convexity permits grain boundary network design. We also investigate the extent to which the control of texture alone allows one to probe the full design space.United States. Dept. of Energy. Office of Basic Energy Sciences (Award no. DE-SC0008926)United States. Department of Defense (National Defense Science & Engineering Graduate Fellowship Program

    Synthesis and Recognition Properties of Higher Order Tetrathiafulvalene (Ttf) Calix N Pyrroles (N=4-6)

    Get PDF
    Two new benzoTTF-annulated calix[n]pyrroles (n = 5 and 6) were synthesized via a one-step acid catalyzed condensation reaction and fully characterized via single crystallographic analyses. As compared to the known tetra-TTF annulated calix[4]pyrrole, which is also produced under the conditions of the condensation reaction, the expanded calix[n]pyrroles (n = 5 and 6) are characterized by a larger cavity size and a higher number of TTF units (albeit the same empirical formula). Analysis of the binding isotherms obtained from UV-Vis spectroscopic titrations carried out in CHCl3 in the presence of both anionic (Cl-, Br-, I-, CH3COO-, H2PO4-, and HSO4-) and neutral (1,3,5-trinitrobenzene (TNB) and 2,4,6-trinitrotoluene (TNT)) substrates revealed that as a general rule the calix[6]pyrrole derivative proved to be the most efficient molecular receptor for anions, while the calix[4]pyrrole congener proves most effective for the recognition of TNB and TNT. These findings are rationalized in terms of the number of electron rich TTF subunits and NH hydrogen bond donor groups within the series, as well as an ability to adopt conformations suitable for substrate recognition, and are supported by solid state structural analyses.National Science Foundation CHE 1057904, 0741973Robert A. Welch Foundation F-1018Danish Natural Science Research Council (FNU) 272-08-0047, 11-106744WCU (World Class University) program of Korea R32-2010-10217-0Villum FoundationChemistr

    The role of the dorsal hippocampus in two versions of the touchscreen automated paired associates learning (PAL) task for mice.

    Get PDF
    RATIONALE: The CANTAB object-location paired-associate learning (PAL) test can detect cognitive deficits in schizophrenia and Alzheimer's disease. A rodent version of touch screen PAL (dPAL) has been developed, but the underlying neural mechanisms are not fully understood. Although there is evidence that inactivation of the hippocampus following training leads to impairments in rats, this has not been tested in mice. Furthermore, it is not known whether acquisition, as opposed to performance, of the rodent version depends on the hippocampus. This is critical as many mouse models may have hippocampal dysfunction prior to the onset of task training. OBJECTIVES: The objectives of this study are to examine the effects of dorsal hippocampal (dHp) dysfunction on both performance and acquisition of mouse dPAL and to determine if hippocampal task sensitivity could be increased using a newly developed context-disambiguated PAL (cdPAL) paradigm. METHODS: In experiment 1, C57Bl/6 mice received post-acquisition dHp infusions of the GABA agonist muscimol. In experiment 2, C57Bl/6 mice received excitotoxic dHp lesions prior to dPAL/cdPAL acquisition. RESULTS: Post-acquisition muscimol dose-dependently impaired dPAL and cdPAL performance. Pre-acquisition dHp lesions had only mild effects on both PAL tasks. Behavioural challenges including addition of objects and degradation of the visual stimuli with noise did not reveal any further impairments. CONCLUSIONS: dPAL and cdPAL performance is hippocampus-dependent in the mouse, but both tasks can be learned in the absence of a functional dHp.CHK received funding from the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI11C1183). CJH, LMS and TJB were funded by Medical Research Council/Wellcome Trust grant 089703/Z/09/Z. BAK was funded by a Gates-Cambridge Fellowship. LMS and TJB also received funding from the Innovative Medicine Initiative Joint Undertaking under grant agreement no 115008 of which resources are composed of EFPIA inkind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013).This is the final published version. It first appeared from Springer at http://dx.doi.org/10.1007/s00213-015-3949-

    Laser Surface Preparation for Adhesive Bonding of Ti-6Al-4V

    Get PDF
    Adhesively bonded structures are potentially lighter in weight than mechanically fastened ones, but existing surface treatments are often considered unreliable. Two main problems in achieving reproducible and durable adhesive bonds are surface contamination and variability in standard surface preparation techniques. In this work three surface pretreatments were compared: laser etching with and without grit blasting and conventional Pasa-Jell treatment. Ti-6Al-4V surfaces were characterized by contact angle goniometry, optical microscopy, and X-ray photoelectron spectroscopy (XPS). Laser -etching was found to produce clean surfaces with precisely controlled surface topographies and PETI-5 lap shear strengths and durabilities were equivalent to those produced with Pasa-Jell

    Diffusive and ballistic current spin-polarization in magnetron-sputtered L1o-ordered epitaxial FePt

    Full text link
    We report on the structural, magnetic, and electron transport properties of a L1o-ordered epitaxial iron-platinum alloy layer fabricated by magnetron-sputtering on a MgO(001) substrate. The film studied displayed a long range chemical order parameter of S~0.90, and hence has a very strong perpendicular magnetic anisotropy. In the diffusive electron transport regime, for temperatures ranging from 2 K to 258 K, we found hysteresis in the magnetoresistance mainly due to electron scattering from magnetic domain walls. At 2 K, we observed an overall domain wall magnetoresistance of about 0.5 %. By evaluating the spin current asymmetry alpha = sigma_up / sigma_down, we were able to estimate the diffusive spin current polarization. At all temperatures ranging from 2 K to 258 K, we found a diffusive spin current polarization of > 80%. To study the ballistic transport regime, we have performed point-contact Andreev-reflection measurements at 4.2 K. We obtained a value for the ballistic current spin polarization of ~42% (which compares very well with that of a polycrystalline thin film of elemental Fe). We attribute the discrepancy to a difference in the characteristic scattering times for oppositely spin-polarized electrons, such scattering times influencing the diffusive but not the ballistic current spin polarization.Comment: 22 pages, 13 figure

    West Nile Virus and Ferruginous Hawks (Buteo Regalis) in the Northern Great Plains

    Get PDF
    Emerging infectious diseases (EID) present significant threats to the conservation of global biodiversity (Daszak et al. 2000). Evaluating impacts (spatial, temporal and demographic) of EIDs on sensitive and declining wildlife populations is challenging because quantitative information is usually dependent on estimates rather than counts (Wobeser 2007) and mortality rates are seldom quantified with conventional monitoring (Naugle et al. 2005)

    Nesting Ecology of Greater Sage-Grouse Centrocercus urophasianus at the Eastern Edge of their Historic Distribution

    Get PDF
    Greater sage-grouse Centrocercus urophasianus populations in North Dakota declined approximately 67% between 1965 and 2003, and the species is listed as a Priority Level 1 Species of Special Concern by the North Dakota Game and Fish Department. The habitat and ecology of the species at the eastern edge of its historical range is largely unknown. We investigated nest site selection by greater sage-grouse and nest survival in North Dakota during 2005 - 2006. Sage-grouse selected nest sites in sagebrush Artemisia spp. with more total vegetative cover, greater sagebrush density, and greater 1-m visual obstruction from the nest than at random sites. Height of grass and shrub (sagebrush) at nest sites were shorter than at random sites, because areas where sagebrush was common were sites in low seral condition or dense clay or clay-pan soils with low productivity. Constant survival estimates of incubated nests were 33% in 2005 and 30% in 2006. Variables that described the resource selection function for nests were not those that modeled nest survival. Nest survival was positively influenced by percentage of shrub (sagebrush) cover and grass height. Daily nest survival decreased substantially when percentage of shrub cover declined below about 9% and when grass heights were less than about 16 cm. Daily nest survival rates decreased with increased daily precipitation

    Laser Ablation Surface Preparation of Ti-6A1-4V for Adhesive Bonding

    Get PDF
    Adhesive bonding offers many advantages over mechanical fastening, but requires certification before it can be incorporated in primary structures for commercial aviation without disbond-arrestment features or redundant load paths. Surface preparation is widely recognized as the key step to producing robust and predictable bonds. Laser ablation imparts both topographical and chemical changes to a surface which can lead to increased bond durability. A laser based process provides an alternative to chemical-dip, manual abrasion and grit blast treatments which are expensive, hazardous, polluting, and less precise. This report documents preliminary testing of a surface preparation technique using laser ablation as a replacement for the chemical etch and abrasive processes currently applied to Ti-6Al-4V alloy adherends. Failure mode, surface roughness, and chemical makeup were analyzed using fluorescence enhanced visualization, microscopy, and X-ray photoelectron spectroscopy, respectively. Single lap shear tests were conducted on bonded and aged specimens to observe bond strength retention and failure mode. Some promising results showed increasing strength and durability of lap shear specimens as laser ablation coverage area and beam intensity increased. Chemical analyses showed trends for surface chemical species which correlated with improved bond strength and durability. Combined, these results suggest that laser ablation is a viable process for inclusion with or/and replacement of one or more currently used titanium surface treatments. On-going work will focus on additional mechanical tests to further demonstrate improved bond durability
    • …
    corecore