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Abstract

Grain boundary engineering (GBE) studies have demonstrated significant materials properties en-
hancements by modifying the populations and connectivity of different types of grain boundaries
within the grain boundary network. In order to facilitate rigorous design and optimization of grain
boundary networks, we develop theoretical tools that are based upon a spectral representation of
grain boundary network statistics. We identify the connection between a local length scale, em-
bodied by triple junctions, and a global length scale, associated with the grain boundary network
configuration as a whole. We define the local state space for triple junctions, A (3), and enumerate
its symmetries. We further define the design space for grain boundary networks, M (3)

H , charac-
terize its important geometric properties, and discuss how its convexity permits grain boundary
network design. We also investigate the extent to which the control of texture alone allows one to
probe the full design space.

Keywords: Triple Junctions, TJDF, Microstructure Design, Grain Boundary Network, Grain
Boundary Engineering

1. Introduction

In the context of texture and grain structure in polycrystalline materials, microstructure design
tools now allow the designer to explore a complete set of physically realizable microstructures and
identify those that meet various performance objectives and design constraints (Adams et al., 2001,
2012). These tools have been used to address design problems in which elastic and plastic prop-
erties are concerned (Adams et al., 2001; Fast et al., 2008; Houskamp et al., 2007; Kalidindi and
Houskamp, 2007; Kalidindi et al., 2004; Lyon and Adams, 2004; Saheli et al., 2005; Sintay and
Adams, 2005). However, their application to other properties of scientific and engineering interest,
such as fracture and corrosion, which depend upon the structure of the grain boundary network,
remains to be addressed. This is an area of great opportunity because grain boundary engineer-
ing (GBE) studies have demonstrated significant enhancements of materials properties (Lehockey
et al., 1999; Lehockey and Palumbo, 1997; Lehockey et al., 1998a,b; Norton et al., 1996), but
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there is currently no “inductive” method (Olson, 1997) by which to design such successes a pri-
ori. For instance, Lin et al. observed a two-fold decrease in the intergranular corrosion rate of
Alloy 600 after GBE processing (Lin et al., 1995). However, no major change in texture accom-
panied this enhancement in properties. Characteristic of GBE materials, the resultant texture was
nearly random, but contained a high fraction of low-energy grain boundaries (up to 55% of the
boundaries were Σ3 type). Contrast this with the fact that for a microstructure with uncorrelated
grain orientations and random texture the expected population of such boundaries is extremely
small (∼1.8%) (Morawiec et al., 1993). It would appear, then, that texture is insufficient to explain
or predict such materials properties enhancements and, consequently, design tools that incorporate
the character and connectivity of the grain boundary network are needed.

In previous work, we introduced a general triple junction distribution function (TJDF) as the
core of a design strategy for grain boundary networks (Johnson and Schuh, 2013). The TJDF
provides a statistical description of grain boundary network connectivity that facilitates adaptation
of the existing design framework to grain boundary network design. Expressed in the context
of the spectral framework of Johnson and Schuh (2013), the TJDF provides a bridge between
crystallographic texture and grain boundary network topology. These tools allow one to rigorously
bound the universe of all possible grain boundary network configurations. In this work, we employ
our previous results in order to define the triple junction hull, M (3)

H , which constitutes the first order
design space for grain boundary networks. M (3)

H bounds the entire space of physically realizable
grain boundary networks, and is pivotal for the adaptation of existing tools to the problem of grain
boundary network design. We also investigate the relative size of the subspace of M (3)

H that is
accessible through the control of crystallographic texture alone.

2. Triple Junction State Space

Grain boundary network design is an intrinsically multi-scale endeavor, requiring the practi-
tioner to specify both (1) the local state and (2) the spatial location of grain boundaries within the
network. However, real grain boundary networks exhibit local correlations that dominate at the
length scale of triple junctions (Frary and Schuh, 2005) and encode network connectivity informa-
tion. This suggests that the most convenient unit for grain boundary network design is, in fact, the
triple junction.

Figs. 1a and 1b illustrate the two dominant length scales that must be considered in the design
of grain boundary networks: that of the triple junction (i.e. the characteristic length scale of
network connectivity), and that of the network as a whole. The duplicity of length scales in the
physical grain boundary network is also reflected in the design space, which encompasses both the
local state space of the triple junctions, and the global configuration space of the network. We will
begin by defining the local state space for triple junctions, and in the subsequent section we will
address the configuration space of the network as a whole.

A triple junction is the one-dimensional edge common to three adjacent grains, or, equivalently,
the one-dimensional intersection of three grain boundaries. It is geometrically defined by eleven
macroscopic state parameters. Five of these define the inclinations of the incident grain boundary
planes. The other six characterize the lattice misorientations between pairs of grains adjoining
each of the three intersecting grain boundaries, and it is on these that we will concentrate in this
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Fig. 1: (a) The grain boundary network of a sample of Inconel 690, representing a global configuration of triple
junctions. Grain boundaries in (a) are color coded by their disorientation axis (in the standard stereographic triangle)
and angle (see the legend at right) (Patala et al., 2012). (b) The local state of a representative triple junction as
indicated by its triple junction misorientations, qAB. The grains coordinating the triple junction are labeled 1, 2, and 3,
with dotted arrows defining a circuit that encloses it. Composition of the grain boundary misorientations around such
a circuit must result in the identity operation (Eq. 3). (c) All six distinct paths surrounding a triple junction. These
correspond to all possible ways of choosing the two independent misorientations coordinating a triple junction, and
thus, represent physically equivalent descriptions. Colors distinguish circuits starting in different grains, and line type
(solid/dashed) distinguish circuits of different sense.
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work. Generalization of our methods and results to include the contribution of grain boundary
planes is possible in principle, but constitutes a significant cost in complexity, and will be left for
future work.

The misorientation associated with a grain boundary between grains A and B is defined by:

qAB = q−1
A qB (1)

where qA and qB are the lattice orientations of grains A and B, respectively. In this work we use unit
quaternions to represent general three-dimensional rotations. The three independent parameters
corresponding to such a rotation may be chosen as the spherical angles of the rotation axis, and
the angle of rotation about that axis. These are related to the components of a unit quaternion,
q = [a, b, c, d], by (Hamilton, 1844; Mason and Schuh, 2008):

a = cos(ω/2)
b = sin(ω/2) sin θ cos φ
c = sin(ω/2) sin θ sin φ
d = sin(ω/2) cos θ

(2)

with θ describing the polar angle measured from the positive z-axis, φ the azimuthal angle mea-
sured from the positive x-axis, and ω the rotation angle.

While there are a total of nine misorientation parameters for a triple junction (three for each
misorientation), crystallographic consistency requires that the composition of the misorientations
around any closed circuit results in the identity (Bollmann, 1984). For a triple junction coordinated
by grains labeled 1, 2, and 3, (see Fig. 1b) this is stated as:

q12q23q31 = I (3)

Therefore, only two of the three misorientations are independent, reducing the total number of mis-
orientation parameters to six. The local state space for triple junction misorientations is, therefore,
initially identified with the product space SO(3) × SO(3).

Further consideration of the physical symmetries of a triple junction reveals equivalence rela-
tions that both couple and reduce the full misorientation space. Consider a circuit enclosing a triple
junction, as depicted in Fig. 1b. One may choose a starting grain and a sense in which to traverse
the circuit in any one of 3 × 2 = 6 ways, each of which will result in an equivalent description
of the triple junction (see Fig. 1c). Consideration of all possible circuits, in conjunction with the
constraint of crystallographic consistency, leads to the following set of equivalence relations for
the ordered pair of independent misorientations defining a triple junction:

F =
{[

q12, q23
]
,
[
q23, q−1

23 q−1
12

]
,
[
q−1

23 q−1
12 , q12

]
,
[
q−1

12 , q12q23

]
,
[
q12q23, q−1

23

]
,
[
q−1

23 , q
−1
12

]}
(4)

where [a, b] ≡ {(q12, q23) | (q12, q23) ∼ (a, b)}. Therefore, for the most general case, the local state
space for triple junction misorientations is given by:

A (3) = (SO(3) × SO(3)) /F (5)
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and is referred to as the triple junction fundamental zone, or asymmetric region.
If the crystallographic point group, for a material of interest, contains symmetry operations in

addition to the identity element, then A (3) is further reduced. For the purposes of this work, we will
demonstrate our methods without including additional crystal symmetry (i.e. for triclinic crystals).
Generalization to other crystal symmetries is possible, but requires some care in handling the
somewhat subtle relationship between crystallographic symmetry and triple junction symmetry.

One noteworthy observation about Eq. 4, is the absence of what is referred to as “grain ex-
change symmetry” (Patala et al., 2012; Patala and Schuh, 2011). When considering grain bound-
aries in isolation, the choice of grain A or grain B as the reference orientation is arbitrary, thus
one has that qAB ∼ qBA. However, this is not true when collectively considering grain boundaries
that intersect at a triple junction. This becomes readily apparent by replacing q12 with q21 in Eq. 3
and observing that the result is no longer the identity. Inclusion of “grain exchange symmetry”
is tantamount to allowing circuit discontinuities, which violates the constraint of crystallographic
consistency. One may indeed reverse the sense of the circuit defining the misorientations around
a triple junction, or choose a different starting grain, but once a sense is chosen it must perpetuate
until the circuit has closed. As a concrete example, if one exchanges q21 for q12 one must also
exchange q32 for q23 and q13 for q31. In this case Eq. 3 becomes, q21q13q32 = I and one may verify
that the identity is correctly obtained.

3. Grain Boundary Network Configuration Space

Having considered the design space for the local length scale, we now turn to the design space
for the grain boundary network as a whole. A grain boundary network configuration may be
characterized by a statistical description of its triple junction states, i.e. a distribution function
over A (3). The probability density associated with observing a triple junction characterized by
the ordered pair of misorientations (q12, q23) ∈ A (3) is given by the six-parameter triple junction
distribution function1 (TJDF), T (q12, q23) = T (ω12, θ12, φ12, ω23, θ23, φ23).

Abstractly, the complete grain boundary network configuration space is simply the set of all
possible functions, T (q12, q23), that satisfy the properties of a probability density function and the
symmetries described by Eq. 4. We refer to this space as the triple junction hull2 and denote it
M (3)

H . A key insight from the work of Adams et al. is that spectral decomposition of the relevant
distribution function, in this case T (q12, q23), provides parameters with which one may concretely
define the boundaries of the space of all such functions (Adams et al., 2012). In other words, the
difficulty of defining M (3)

H directly in function space is greatly alleviated in “frequency” space. In

1The full eleven-parameter TJDF would include the boundary plane parameters. For the sake of brevity, and be-
cause the context is clear, we will refer to the six-parameter TJDF, which contains only the misorientation information,
simply as the TJDF. However, it should be noted that alternative representations of the statistics of triple junction char-
acter exist, which include additional crystallographic parameters such as those of the boundary plane normals (Hardy
and Field, 2011, 2012).

2The notation here is chosen to maintain consistency with and generalize the existing notation in the microstructure
design literature. For example, the texture set and texture hull originally defined in (Adams et al., 2001), are denoted
using our scheme as M (1)

S and M (1)
H respectively.

5



order to make use of this insight, it is convenient to discretize A (3). This immediately suggests a
universal form for T (q12, q23), given by:

T (q12, q23) ≈
K∑

k=1

pkδ
(3)

(
q12,

kq12

)
δ(3)

(
q23,

kq23

)
(6)

where pk is the probability associated with the k-th ordered pair of misorientations in the dis-
cretization, denoted

(
kq12,

kq23

)
, and the approximation becomes exact as K → ∞. The basis

functions in Eq. 6 should be regarded as a composite symbol, which denotes a Dirac delta like
function respecting the symmetries embodied in Eq. 4. This can be expressed explicitly as:

δ(3)
(
q12,

kq12

)
δ(3)

(
q23,

kq23

)
=

1
6

[
δ
(
q12,

kq12

)
δ
(
q23,

kq23

)
+δ

(
q12,

kq23

)
δ
(
q23,

(
kq12

kq23

)−1
)

+δ
(
q12,

(
kq12

kq23

)−1
)
δ
(
q23,

kq12

)
+δ

(
q12,

kq−1
12

)
δ
(
q23,

kq12
kq23

)
+δ

(
q12,

kq12
kq23

)
δ
(
q23,

kq−1
23

)
+δ

(
q12,

kq−1
23

)
δ
(
q23,

kq−1
12

) ]
(7)

The pk define a vector space, M(3), over RK , in which each point, p = (p1, p2, . . . , pK), represents
a grain boundary network (i.e. a specific TJDF). Given that the pk represent probabilities, M(3)

H ⊂

M(3) is defined by:

M(3)
H =

p

∣∣∣∣∣∣∣ p = (p1, p2, . . . , pK) , 0 ≤ pk,

K∑
k=1

pk = 1

 (8)

which is a standard (K − 1)-simplex, as shown in Fig. 2a. The change to the roman typeface of
M(3)

H is intended to indicate the Dirac basis representation of the triple junction hull, whereas the
script typeface of M (3)

H refers only to the abstract concept, without reference to a specific basis (a
distinction that will become important in what follows).

The vertices of M(3)
H correspond to points, k p, with only one non-zero component, k pk = 1.

These points represent the coefficients of δ(3) type microstructures centered on
(

kq12,
kq23

)
. We

refer to this set of points as the triple junction set, M(3)
S ⊂ M(3)

H ⊂ M(3), which may be defined
mathematically by:

M(3)
S =

{
k p

∣∣∣∣ k p =
(

k p1,
k p2, . . . ,

k pK

)
, k pr = δrk, k ∈ [1,K]

}
(9)

It is clear that M(3)
H is simply the convex hull of M(3)

S , which is the reason for this nomenclature.
Because of the simplicity of the geometry of this definition of M(3)

H it is efficient to sample from
and easy to explore. However, another definition also proves to be important.
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Fig. 2: (a) The triple junction hull, M(3)
H , in the discrete basis with K = 4, corresponding to the standard 3-simplex,

or tetrahedron. The vertices are points for which the corresponding pk = 1 and all others are 0, edges are points for
which two of the pk are non-zero, faces correspond to points for which three of the pk are non-zero, and the interior is
populated by points for which all of the pk are non-zero. (b) Orthogonal projection of m(3)

H in the first three non-trivial
dimensions. Two-dimensional projections are also shown as outlines for clarity.

Alternatively to Eq. 6, the TJDF may also be expressed as a generalized Fourier series in the
basis of bi-polar hyperspherical harmonics (Johnson and Schuh, 2013):

T (q12, q23) =
∑

n1,λ12,µ12
n3,λ23,µ23

tn3,λ23,µ23
n1,λ12,µ12

Zn1
λ12,µ12

(q12) Zn3
λ23,µ23

(q23) (10)

where the coefficients, tn3,λ23,µ23
n1,λ12,µ12

, may be computed by the inner product:

tn3,λ23,µ23
n1,λ12,µ12

=

∮
T (q12, q23) Zn1

∗
λ12,µ12

(q12) Zn3
∗

λ23,µ23
(q23) (11)

In Eq. 11, ∗ denotes complex conjugation, and
∮

denotes integration over the entire domain,
S 3 × S 3, with respect to the appropriate invariant measure (Johnson and Schuh, 2013), which is
omitted for brevity. Eq. 11 represents a generalized Fourier transform, with Eq. 10 providing
its inverse. We emphasize that Eq. 10 is completely general, and triple junction statistics of any
microstructure may be expressed in this form, regardless of the presence or absence of spatial
correlations. In this basis, the tn3,λ23,µ23

n1,λ12,µ12
define an infinite-dimensional vector space, m(3), over C∞,

in which each point, t =
(
t0,0,0
0,0,0, t

0,0,0
2,0,0, . . .

)
, represents a grain boundary network.

Using Eq. 11 we can take the Fourier transform of Eq. 6, which results in:

tn3,λ23,µ23
n1,λ12,µ12

≈

K∑
k=1

pk
ktn3,λ23,µ23

n1,λ12,µ12
(12)
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where ktn3,λ23,µ23
n1,λ12,µ12

are the Fourier coefficients of δ(3)
(
q12,

kq12

)
δ(3)

(
q23,

kq23

)
.

In light of Eq. 12, alternate definitions of M(3)
S and M(3)

H may be given, respectively, by:

m(3)
S =

{
k t

∣∣∣∣∣ k t =
(

kt0,0,0
0,0,0,

kt0,0,0
2,0,0,

kt0,0,0
2,1,−1, . . . ,

kt6,3,−2
4,2,1 , . . .

)
,

ktn3,λ23,µ23
n1,λ12,µ12

=

∮
δ(3)

(
q12,

kq12

)
δ(3)

(
q23,

kq23

)
Zn1
∗

λ12,µ12
(q12) Zn3

∗
λ23,µ23

(q23) ,(
kq12,

kq23

)
∈ A (3), k ∈ [1,K]

} (13)

m(3)
H =

t

∣∣∣∣∣∣∣ t ≈
K∑

k=1

pk
k t, k t ∈ m(3)

S , 0 ≤ pk,

K∑
k=1

pk = 1

 (14)

where the lower-case m(3)
S and m(3)

H are chosen to distinguish the Fourier representation of the triple
junction set and triple junction hull, respectively, from their representation in the Dirac basis, M(3)

S

and M(3)
H . Geometrically, m(3)

H represents a closed convex polytope inhabiting infinite dimensional
Fourier space, whose vertices are the set m(3)

S , and clearly, m(3)
S ⊂ m(3)

H ⊂ m(3). Considering the real
and imaginary components of the tn3,λ23,µ23

n1,λ12,µ12
as separate dimensions, Fig. 2b displays an orthogonal

projection of m(3)
H in the first three non-trivial Fourier dimensions.

In the preceding derivation we temporarily ignored a somewhat subtle, albeit important, issue
regarding the convexity of the triple junction hull. Eqns. 8 and 14 define the triple junction hull as
the convex hull of the triple junction set. It is evident that the coefficients of any TJDF, whether in
the Dirac or Fourier bases, may be expressed as a convex linear combination of those of the triple
junction set. However, it is not immediately obvious that the converse is true, i.e that every convex
combination, so formed, generates a TJDF that is physically realizable. This point is essential
to establish because if there exist certain, otherwise valid, p that do not correspond to physically
realizable microstructures, then the triple junction hull is not truly convex, and it contains non-
physical regions, corresponding to non-feasible design solutions. If such were the case it would
significantly hamper the use of the foregoing methodology, if not altogether thwart it.

In order to prove the convexity of the triple junction hull, we first give an example of a grain
boundary network composed of triple junctions that all possess the same local state. Fig. 3 shows
a hypothetical microstructure consisting of columnar grains, each possessing one of three possible
orientations. In such a microstructure every triple junction is coordinated by each of the three
possible orientations, and hence all triple junctions are identical.

In order to prove the convexity of the triple junction hull, it is enough to show that there exists
at least one physically realizable microstructural instantiation for any p ∈ M(3)

H . One procedure
to construct a microstructure corresponding to an arbitrary p is by “gluing” together a succession
of lamellae of the single triple junction state microstructures, depicted in Fig. 3, whose relative
sizes are given by the corresponding pk. Fig. 4 shows an example of such a microstructure in
which each lamella is given a different color scheme. The target values of the pk are, respectively,
p = (0.1875, 0.0625, 0.4375, 0.3125). At the interface between lamellae there are triple junctions
that do not correspond to any of the target states, as shown in the interfacial detail views in Fig. 4,
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Fig. 3: A schematic of a columnar microstructure in which every triple junction possesses the same state. The three
grain orientations are distinguished by color (red, blue, and white).

which are artifacts of the “gluing” operation. Consequently, the pk do not achieve their target
values, as demonstrated by the actual values shown in Fig. 4. However, as the system size grows,
the fraction of triple junctions inhabiting the interfacial regions decreases as Nt j

−1/2, where Nt j

is the total number of triple junctions in the system. Thus, in the limit as Nt j → ∞ the target
distribution is realized exactly, and this is true for any arbitrary p. Therefore, we conclude that the
triple junction hull is formally convex. The coefficients of any TJDF may be decomposed into a
convex combination of the coefficients of the triple junction set, and every convex combination is
physically realizable. The convexity of M (3)

H implies that any path through the design space will
be entirely composed of physically realizable microstructural states; thus, during the design and
optimization process there is no danger of encountering any unphysical solutions. Furthermore,
this convexity permits efficient exploration of the design space via the pk, for which calculation
and tests of feasibility are computationally inexpensive.

It is worth noting that, for triple junctions, this construction is completely general. For an
arbitrarily chosen state, characterized by the ordered pair of misorientations (q12, q23), one may
generate a microstructure in which all triple junctions are in the chosen state. However, it is not
possible to generate a microstructure in which all grain boundaries possess the same, arbitrarily
chosen, state (q12). This fact suggests that a grain boundary hull, M (2)

H , would be non-convex,
which highlights the convenience of designing grain boundary networks in the context of triple
junctions instead of directly focusing on grain boundaries.

4. Texture & Topology

The tools that we have developed here are intended to aid in the design of grain boundary
networks. The triple junction hull defines the design space, and provides the necessary parameters
(the pk or tn3,λ23,µ23

n1,λ12,µ12
) to explore its entirety in search of grain boundary networks with enhanced

physical properties.
While all points in the triple junction hull are feasible, it is not necessarily true that they will

all be equally straightforward to synthesize experimentally. Ultimately, fabrication of a particular
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Fig. 4: A microstructure with columnar grains and periodic boundary conditions, formed by “gluing” together four
lamellae, each with a single triple junction state. The triple junction state of each lamella is shown in the lower detail
views, along with the actual values of pk that are attained. For ease of visualization the orientations of the incident
grains are colored rather than the grain boundaries themselves. The states of triple junctions inhabiting the interfaces
are shown in the upper detail views.
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grain boundary network amounts to controlling the orientation of each grain and its relative po-
sition in the microstructure. Because most standard processing routes provide control primarily
over the distribution of grain orientations, it is useful to consider how far one might get through
the control of crystallographic texture alone.

In the absence of spatial correlations of grain orientation, it is possible to derive an uncorrelated
TJDF, which we denote T̃ (q12, q23), and whose coefficients may be obtained directly from those of
the orientation distribution function (ODF) according to3 (Johnson and Schuh, 2013):

t̃n3,λ23,µ23
n1,λ12,µ12

=
∑
l1,m1

n2,l2,m2
l3,m3
λ1,µ1
λ3,µ3

(−1)λ12−λ3+µ3cn1
l1,m1

cn2
l2,m2

cn3
l3,m3

An1,l1,m1
λ1,µ1,λ12,µ12

An3,l3,m3
λ3,µ3,λ23,µ23

Ln3,λ3,−µ3
n1,λ1,µ1;n2,l2,m2

(15)

where the cn
l,m are the coefficients of an ODF expressed as a generalized Fourier series in the ba-

sis of hyperspherical harmonics, the An,l,m
l2,m2,l1,m1

are the coefficients of the hyperspherical harmonic
addition theorem (Mason, 2009) as defined in Appendix B.1, and the Ln3,l3,m3

n1,l1,m1;n2,l2,m2
are the coeffi-

cients of the hyperspherical harmonic linearization theorem defined in Appendix B.2.
Consider all possible simultaneous values that the t̃n3,λ23,µ23

n1,λ12,µ12
may take. This represents a subset

of m(3)
H , which we denote m̃(3)

H , and whose size, relative to m(3)
H provides an estimate for how much of

the grain boundary network design space is accessible through the control of texture alone. In order
to measure m̃(3)

H , we must first introduce the concepts of the texture set and texture hull4 (Adams
et al., 2001, 2012; Fast et al., 2008) and provide their mathematical definitions in the context of
the hyperspherical harmonic expansion.

As described by Mason (2009), an ODF may be expressed as a linear combination of hyper-
spherical harmonics:

f (q) =

∞∑
n=0,2,...

n∑
l=0

l∑
m=−l

cn
l,mZn

l,m(q) (16)

where the coefficients, cn
l,m, correspond to those appearing in Eq. 15. The texture set, which we

denote as m(1)
S , consists of the Fourier representation of all possible single crystal textures. For the

case of materials with triclinic crystal and sample symmetry, m(1)
S can be expressed as:

m(1)
S =

{
jc

∣∣∣∣ jc =
(

jc0
0,0,

jc2
0,0,

jc2
1,−1, . . .

)
, jcn

l,m = Zn∗
l,m

(
jq
)
, jq ∈ S O(3) , j ∈ [1, J]

}
(17)

The texture hull, m(1)
H , which delineates the space of all possible crystallographic textures, is simply

the convex hull of m(1)
S :

m(1)
H =

c

∣∣∣∣∣∣∣ c ≈
J∑

j=1

p′j
jc, jc ∈ m(1)

S , 0 ≤ p′j,
J∑

j=1

p′j = 1

 (18)

3The form of Eq. 15 is somewhat different than what is found in Eq. 15 of Johnson and Schuh (2013), though the
two are equivalent. The form given in Johnson and Schuh (2013) is more efficient computationally, while Eq. 15 of
the present work is more compact from a notational perspective.

4These concepts were first introduced by Adams et al. (2001) as a specific case of the more general concepts of
microstructure set and microstructure hull.
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Fig. 5: In (a) The green surface contains a three-dimensional orthogonal projection of m(1)
H , and the points are samples,

cs, taken uniformly from the six-dimensional orthogonal projection of m(1)
H , as defined in Section 4. In (b) the red

surface contains a three-dimensional orthogonal projection of m(3)
H , the blue surface corresponds to m̃(3)

H , and the
points are the t s obtained from the cs via Eq. 15.

Having defined m(1)
H , we use the following procedure to quantify the size of m̃(3)

H relative to
m(3)

H . First, we generate S samples, cs, s ∈ [1, S ], uniformly distributed within m(1)
H . We then use

Eq. 15 to compute t̃ s for each of the ODFs so generated. The convex hull of all of the t̃ s is then an
approximation of m̃(3)

H .
Due to the computational cost of defining high-dimensional convex hulls and generating uni-

form samples over them, we consider only terms up to max(n1, n3) = 2. In this case there are six
independent non-degenerate dimensions for m(3)

H , as can be verified through the use of Eqs. A.4
and A.11. They are: Re

(
t2,0,0
0,0,0

)
, Re

(
t2,2,0
0,0,0

)
, Re

(
t2,2,1
0,0,0

)
, Im

(
t2,2,1
0,0,0

)
, Re

(
t2,2,2
0,0,0

)
, Im

(
t2,2,2
0,0,0

)
. According to

Eq. 15, they collectively depend only on the following five ODF coefficients: c0
0,0, c2

0,0, c2
2,0, c2

2,1,

c2
2,2. Because c0

0,0 =
(
2π2

)−1/2
is a constant, and cn

l,0 is strictly real for even l, by virtue of the re-
ality condition for ODFs (Eq. A.3), we are only concerned with the orthogonal projection of m(1)

H

defined by the following six dimensions: Re
(
c2

0,0

)
, Re

(
c2

2,0

)
, Re

(
c2

2,1

)
, Im

(
c2

2,1

)
, Re

(
c2

2,2

)
, Im

(
c2

2,2

)
.

We numerically converted the vertex representation of m(1)
H , given in Eq. 18, to its equivalent

half-space (or facet) representation by means of Jacobson’s vert2lcon.m code (Jacobson, 2012).
Subsequently, we used the hit-and-run algorithm (see Kroese et al., 2011, pp. 40-44), as imple-
mented in Benham’s cprnd.m (Benham, 2012), to sample S = 106 points uniformly within the con-
vex polytope defined by the above-mentioned six-dimensional orthogonal projection of m(1)

H . We
performed all computations using MATLAB (2012). A three-dimensional orthogonal projection
of m(1)

H and the samples that were generated are shown in Fig. 5a. We then computed the t̃ s from
Eq. 15, which are shown, together with their convex hull, in Fig. 5b. Let µ̃d/µd ≡ µd

(
m̃(3)

H

)
/µd

(
m(3)

H

)
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Fig. 6: Histogram of the ratio of the six-dimensional measures of m̃(3)
H and m(3)

H . The mean and standard deviation are
also plotted.

denote the ratio of the d-dimensional measures of m̃(3)
H and m(3)

H . With 110 repetitions of this pro-
cess, we found µ̃6/µ6 = 0.0107 with a standard deviation of 0.0004 (see Fig. 6). This is to say
that, restricting our attention to the six lowest order dimensions, only about 1% of all possible
TJDFs are accessible in the absence of spatial correlations in grain orientation. One should note,
however, that the small relative size of m̃(3)

H is largely a result of dimensionality. As is apparent
from Fig. 5b, for a given dimension, m̃(3)

H covers roughly half the range of m(3)
H ; more specifically,

µ̃1/µ1 = 0.4193 ± 0.0444, averaged over all six dimensions and all trials. The quantity µ̃1/µ1 may
be regarded as the average probability that a given coefficient from a randomly selected TJDF will
lie within the bounds of m̃(3)

H . Even if we had µ̃1/µ1 = 1−ε for arbitrarily small ε > 0, so long as the
number of dimensions for which µ̃1/µ1 < 1 is not finite, then limd→∞ µ̃d/µd = 0. So, indeed, m̃(3)

H is
smaller than m(3)

H , however, how much smaller depends upon how many dimensions one considers,
and, since in all practical cases one will truncate the series defining T (q12, q23) to exclude the less
important higher-order terms, this limitation is at least partially ameliorated.

Another salient point that can be observed in Fig. 5b is that m̃(3)
H is concentrated about the origin.

In this space, the origin corresponds to the uniform TJDF, in which all types of triple junction are
equally likely, and for which the only non-zero coefficient is t0,0,0

0,0,0 =
(
2π2

)−1
. This means that the

TJDFs that are accessible in the absence of spatial correlations correspond to somewhat less exotic
TJDFs than those that are possible with spatial correlations.

5. Conclusions

The character and connectivity of grain boundaries in polycrystalline materials controls a host
of materials properties and phenomena. Empirical evidence from grain boundary engineering
(GBE) studies suggests the possibility of enhancing materials properties through manipulation of

13



the grain boundary network in strategic ways. At present, however, general understanding of grain
boundary network structure and its effect on materials properties is limited. This has precluded
the inductive design of grain boundary networks.

In this work we have highlighted the intrinsically multi-scale nature of grain boundary network
design. We identified triple junctions as convenient topological features corresponding to a local
length scale. We defined the local state space for triple junctions and provided the equivalence re-
lations that define its fundamental zone, A (3). We also defined the global configuration space for
grain boundary networks, M (3)

H , and demonstrated its convexity. These tools allow one to explore
the complete universe of grain boundary networks in search of application specific globally opti-
mal network configurations. The importance of these tools is further highlighted by the fact that
existing GBE processing methods are only effective for materials that twin readily. The prospect
of inductive grain boundary network design suggests the opportunity to achieve unprecedented
properties enhancements in materials that are not amenable to traditional GBE.

Additionally, we investigated the relative size of the portion of the grain boundary network
design space that is accessible in the absence of spatial correlations, m̃(3)

H . We found m̃(3)
H to be a

small fraction of the size of m(3)
H . The implications of these results are significant: the control and

manipulation of crystallographic texture alone is insufficient to access the vast majority of the grain
boundary network design space. Furthermore, spatial correlations of grain orientation expand this
space and are required to reach the more extreme grain boundary network configurations. At
the same time, the fact that higher-order terms in the Fourier series of a TJDF are decreasingly
important, indicates that m̃(3)

H is of more significance than first impressions might suggest.
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Appendix A. Relations for the Coefficients of ODFs and TJDFs

Constraints imposed upon a function that is to be expressed in the form of a generalized Fourier
series result in constraints upon the values of and relationships between the coefficients. In this
section we give several of the most useful of these relations for ODFs and TJDFs. The existence
of such relations allows one to identify which coefficients are independent, and therefore reduces
the computational cost of their evaluation. Furthermore, these relations reduce the dimensionality
of m(3)

H , thus greatly reducing the computational cost of exploring the design space.

Appendix A.1. The Reality Condition

Because an ODF is a probability density function it must be strictly real valued, i.e. f
∗(q) =

f (q). Employing the expansion of Eq. 16 for both sides of this expression results in:∑
n,l,m

cn∗
l,m Zn∗

l,m (q) =
∑
n,l,m

cn
l,mZn

l,m(q) (A.1)
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Making use of the complex conjugation identity for the hyperspherical harmonics (Mason, 2009)
one has:∑

n,l,m

(−1)l+mcn∗
l,m Zn

l,−m(q) =
∑
n,l,m

cn
l,mZn

l,m(q) (A.2)

By changing indices on the left-hand side (m ↔ −m), setting the coefficients equal term by term,
and taking the complex conjugate of both sides, one arrives at:

cn∗
l,m = (−1)l−mcn

l,−m (A.3)

as a reality condition for the coefficients of an ODF.
The same procedure may be used to obtain the reality condition for a TJDF, with the result

being:

tn3,λ23,µ23
∗

n1,λ12,µ12
= (−1)λ12−µ12+λ23−µ23tn3,λ23,−µ23

n1,λ12,−µ12
(A.4)

Appendix A.2. Triple Junction Symmetries
Consider a circuit enclosing a triple junction coordinated by grains labeled 1, 2, and 3 (see

Fig. 1b). Without loss of generality, let the circuit begin in grain 1, proceeding next to grain 2,
on to grain 3 and finally returning to grain 1. We take, as a convention, the misorientations of the
first two grain boundaries that are crossed, q12 and q23, to be the two independent misorientations
defining the triple junction. Traversing the circuit in the opposite direction results in an equivalent
description using the misorientations q13 and q32. Thus the TJDF must be invariant with respect to
either choice, and we have:

T (q12, q23) = T (q13, q32)

= T
(
q12q23, q−1

23

) (A.5)

where the second line is a result of Eq. 3 and the definition of a misorientation. Expanding both
sides using Eq. 10 one has:∑

n1,λ12,µ12
n3,λ23,µ23

tn3,λ23,µ23
n1,λ12,µ12

Zn1
λ12,µ12

(q12) Zn3
λ23,µ23

(q23) =
∑

n1,λ12,µ12
n3,λ23,µ23

tn3,λ23,µ23
n1,λ12,µ12

Zn1
λ12,µ12

(q12q23) Zn3
λ23,µ23

(
q−1

23

)
(A.6)

For the sake of typographic economy, and because all subsequent manipulations will be performed
exclusively on the right-hand side, we will henceforth omit the left-hand side. The first hyperspher-
ical harmonic on the right-hand side may be expanded using the addition theorem (Eq. B.1), and
the second hyperspherical harmonic may be expressed as a function of q23 by means of the in-
version symmetry relation for hyperspherical harmonics (Eq. C.3 of Johnson and Schuh (2013)),
resulting in:∑

n1,λ12,µ12
n3,λ23,µ23

(−1)λ23tn3,λ23,µ23
n1,λ12,µ12

∑
λ1,µ1
l1,m1

An1,λ12,µ12
λ1,µ1,l1,m1

Zn1
λ1,µ1

(q12) Zn1
l1,m1

(q23) Zn3
λ23,µ23

(q23) (A.7)
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The product of the two hyperspherical harmonics taking a common argument is then simplified
via the linearization theorem (Eq. B.3):

∑
n1,λ1,µ1
n2,l2,m2


∑

n3,λ23,µ23
λ12,µ12
l1,m1

(−1)λ23tn3,λ23,µ23
n1,λ12,µ12

An1,λ12,µ12
λ1,µ1,l1,m1

Ln2,l2,m2
n1,l1,m1;n3,λ23,µ23

 Zn1
λ1,µ1

(q12) Zn2
l2,m2

(q23) (A.8)

Finally, relabeling the indices (λ12 ↔ λ1, µ12 ↔ µ1, n3 ↔ n2, λ23 ↔ l2, µ23 ↔ m2), and setting the
coefficients of Eq. A.8 equal to those of the left-hand side of Eq. A.6, term by term, results in the
following:

tn3,λ23,µ23
n1,λ12,µ12

=
∑

n2,l2,m2
λ1,µ1
l1,m1

(−1)l2tn2,l2,m2
n1,λ1,µ1

An1,λ1,µ1
λ12,µ12,l1,m1

Ln3,λ23,µ23
n1,l1,m1;n2,l2,m2

(A.9)

as the circuit sense symmetry relation for the coefficients of a TJDF.
Following the same procedure for the case in which the sense is not reversed, but the starting

grain is changed results in the following:

tn3,λ23,µ23
n1,λ12,µ12

=
∑

n2,l2,m2
λ1,µ1
l1,m1

(−1)λ1tn1,λ1,µ1
n2,l2,m2

An1,λ1,µ1
λ12,µ12,l1,m1

Ln3,λ23,µ23
n1,l1,m1;n2,l2,m2

(A.10)

as the circuit start symmetry relation.
The somewhat complicated nature of the expressions in Eqs. A.9 – A.10, renders them imprac-

tical for most uses. However, if one follows the same procedure, but considers the simultaneous
operations of a change in starting grain and change of circuit sense, one arrives at the following
simple expression:

tn1,λ12,µ12
n3,λ23,µ23

= (−1)λ12+λ23tn3,λ23,µ23
n1,λ12,µ12

(A.11)

The use of Eq. A.11 obviates the need for Eqs. A.9 – A.10, as it simultaneously enforces both types
of symmetry condition. Furthermore, Eq. A.11 is clearly preferable for most applications, such
as the identification of the independent TJDF coefficients, which is its primary use in the present
work (see Section 4).

Appendix B. Mathematical Theorems

Here we provide several mathematical results that are both necessary for the main results of
this paper and of great use generally for the mathematical treatment of microstructures.
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Appendix B.1. Addition Theorem
Mason (2009) provided an addition theorem for the hyperspherical harmonics, which we re-

produce here in order to make our notation, which differs from that of Mason, explicit. A hy-
perspherical harmonic, whose argument is the result of the composition of two rotations, may be
expanded according to:

Zn
l,m(q2q1) =

∑
l2,m2
l1,m1

An,l,m
l2,m2,l1,m1

Zn
l2,m2

(q2) Zn
l1,m1

(q1) (B.1)

with the coefficients of the addition theorem provided by:

An,l,m
l2,m2,l1,m1

= (−1)−l2−l1

√
2π2 (2l2 + 1) (2l1 + 1)

n + 1
Cl,m

l2,m2,l1,m1

{
l l2 l1

n/2 n/2 n/2

}
(B.2)

Appendix B.2. Linearization Theorem
Orthogonal polynomials come equipped with a linearization theorem, which allows one to ex-

press the product of two polynomials of like argument, but differing degrees (and possibly different
parameters), as a linear combination of other polynomials (Park, 2006). The linearization theorem
for the hyperspherical harmonics takes the following form:

Zn1
l1,m1

Zn2
l2,m2

=

n1+n2∑
n3=|n1−n2 |

n3∑
l3=0

l3∑
m3=−l3

Ln3,l3,m3
n1,l1,m1;n2,l2,m2

Zn3
l3,m3

(B.3)

In Eq. B.3 all of the hyperspherical harmonics take identical arguments, which are omitted for
brevity. The linearization coefficient, Ln3,l3,m3

n1,l1,m1;n2,l2,m2
, is found by multiplying both sides by the

complex conjugate of another hyperspherical harmonic of the same argument and integrating over
the entire domain:∮

Zn1
l1,m1

Zn2
l2,m2

Z
n′3∗
l′3,m

′
3

=

n1+n2∑
n3=|n1−n2 |

n3∑
l3=0

l3∑
m3=−l3

Ln3,l3,m3
n1,l1,m1;n2,l2,m2

∮
Zn3

l3,m3
Z

n′3∗
l′3,m

′
3

(B.4)

The integral on the right-hand side is equal to δn3,n′3
δl3,l′3

δm3,m′3
by the orthonormality of the hyper-

spherical harmonics, which results in:

Ln3,l3,m3
n1,l1,m1;n2,l2,m2

=

∮
Zn1

l1,m1
Zn2

l2,m2
Zn3∗

l3,m3
(B.5)

In previous work (Johnson and Schuh, 2013), we provided the solution to integrals of the form
that appears in Eq. B.5. Substituting these results into Eq. B.5 and simplifying yields:

Ln3,l3,m3
n1,l1,m1;n2,l2,m2

=

√
(n1 + 1) (n2 + 1) (n3 + 1) (2l1 + 1) (2l2 + 1)

2π2 Cl3,m3
l1,m1,l2,m2


n1/2 n2/2 n3/2
n1/2 n2/2 n3/2

l1 l2 l3


(B.6)
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Meremianin (2006) derived a similar result for what he referred to as the spherical-type hy-
perspherical harmonics or C-harmonics, Cn,l,m, which are related to the hyperspherical harmonics

used in this work by a normalization factor5: Zn
l,m =

√
n+1
2π2 Cn,l,m. Meremianin refers to his result as

the C-type Clebsch-Gordan Coefficients, Cn3l3m3
n1l1m1;n2l2m2

, and they are related to our Ln3,l3,m3
n1,l1,m1;n2,l2,m2

by
the following:

Ln3,l3,m3
n1,l1,m1;n2,l2,m2

=

√
(n1 + 1) (n2 + 1)

2π2 (n3 + 1)
Cn3l3m3

n1l1m1;n2l2m2
(B.7)

References

Adams, B.L., Henrie, A., Henrie, B., Lyon, M., Kalidindi, S.R., Garmestani, H., 2001. Microstructure-sensitive design
of a compliant beam. Journal of the Mechanics and Physics of Solids 49, 1639–1663.

Adams, B.L., Kalidindi, S.R., Fullwood, D.T., 2012. Microstructure-Sensitive Design for Performance Optimization.
Butterworth-Heinemann. 1 edition.

Benham, T., 2012. Uniform distribution over a convex polytope.
Bollmann, W., 1984. Triple lines in polycrystalline aggregates as disclinations. Philosophical Magazine A 49, 73–79.
Fast, T., Knezevic, M., Kalidindi, S.R., 2008. Application of microstructure sensitive design to structural components

produced from hexagonal polycrystalline metals. Computational Materials Science 43, 374–383.
Frary, M.E., Schuh, C.A., 2005. Connectivity and percolation behaviour of grain boundary networks in three dimen-

sions. Philosophical Magazine 85, 1123–1143.
Hamilton, W.R., 1844. On a new species of imaginary quantities connected with a theory of quaternions. Proceedings

of the Royal Irish Academy 2, 424–434.
Hardy, G., Field, D.P., 2011. A triple junction distribution function, in: Materials Science and Technology Conference

and Exhibition 2011, MS&T’11, Columbus, OH. pp. 378–384.
Hardy, G., Field, D.P., 2012. Triple Junction Distributions in Grain Boundary Engineered Alloys, in: Materials

Science and Technology Conference and Exhibition 2012, MS&T’12, Pittsburgh, PA.
Houskamp, J.R., Proust, G., Kalidindi, S.R., 2007. Integration of Microstructure-Sensitive Design with Finite Element

Methods: Elastic-Plastic Case Studies in FCC Polycrystals. International Journal for Multiscale Computational
Engineering 5, 261–272.

Jacobson, M., 2012. Representing Polyhedral Convex Hulls by Vertices or (In)Equalities.
Johnson, O.K., Schuh, C.A., 2013. The uncorrelated triple junction distribution function: Towards grain boundary

network design. Acta Materialia 61, 2863–2873.
Kalidindi, S.R., Houskamp, J.R., 2007. Application of the Spectral Methods of Microstructure Design to Continuous

Fiber-reinforced Composites. Journal of Composite Materials 41, 909–930.
Kalidindi, S.R., Houskamp, J.R., Lyon, M., Adams, B.L., 2004. Microstructure sensitive design of an orthotropic

plate subjected to tensile load. International Journal of Plasticity 20, 1561–1575.
Kroese, D.P., Taimre, T., Botev, Z.I., 2011. Handbook of Monte Carlo Methods. Wiley Series in Probability and

Statistics, Wiley, Hoboken.
Lehockey, E.M., Limoges, D., Palumbo, G., Sklarchuk, J., Tomantschger, K., Vincze, A., 1999. On improving the

corrosion and growth resistance of positive Pb-acid battery grids by grain boundary engineering. Journal of Power
Sources 78, 79–83.

Lehockey, E.M., Palumbo, G., 1997. On the creep behaviour of grain boundary engineered nickel. Materials Science
and Engineering: A 237, 168–172.

5Because Meremianin did not explicitly state the phase convention of what he calls “. . . the usual 3D-spherical
harmonics . . . ” (Meremianin, 2006), it is possible that there is also a missing factor of (−1)l.

18



Lehockey, E.M., Palumbo, G., Brennenstuhl, A., Lin, P., 1998a. Mitigating intergranular attack and growth in lead-
acid battery electrodes for extended cycle and operating life. Metallurgical and Materials Transactions A 29,
387–396.

Lehockey, E.M., Palumbo, G., Lin, P., 1998b. Improving the weldability and service performance of nickel-and iron-
based superalloys by grain boundary engineering. Metallurgical and Materials Transactions A 29, 3069–3079.

Lin, P., Palumbo, G., Erb, U., Aust, K., 1995. Influence of grain boundary character distribution on sensitization and
intergranular corrosion of alloy 600. Scripta Metallurgica et Materialia 33, 1387–1392.

Lyon, M., Adams, B.L., 2004. Gradient-based non-linear microstructure design. Journal of the Mechanics and Physics
of Solids 52, 2569–2586.

Mason, J.K., 2009. The relationship of the hyperspherical harmonics to SO(3), SO(4) and orientation distribution
functions. Acta crystallographica. Section A, Foundations of crystallography 65, 259–66.

Mason, J.K., Schuh, C.A., 2008. Hyperspherical harmonics for the representation of crystallographic texture. Acta
Materialia 56, 6141–6155.

MATLAB, 2012. 8.0.0.783 (R2012b). The MathWorks, Inc., Natick, MA.
Meremianin, A.V., 2006. Multipole expansions in four-dimensional hyperspherical harmonics. Journal of Physics A:

Mathematical and General 39, 3099–3112.
Morawiec, A., Szpunar, J.A., Hinz, D., 1993. Texture influence on the frequency of occurrence of CSL-boundaries in

polycrystalline materials. Acta metallurgica et materialia 41, 2825–2832.
Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman,

M., Klabunde, C.E., Lee, D.F., Sales, B.C., List, F.A., 1996. Epitaxial YBa2Cu3O7 on Biaxially Textured Nickel
(001): An Approach to Superconducting Tapes with High Critical Current Density. Science 274, 755–757.

Olson, G.B., 1997. Computational Design of Hierarchically Structured Materials. Science 277, 1237–1242.
Park, S., 2006. Integral evaluation of the linearization coefficients of the product of two Legendre polynomials.

JOURNAL OF APPLIED MATHEMATICS AND 20, 623–635.
Patala, S., Mason, J.K., Schuh, C.A., 2012. Improved representations of misorientation information for grain boundary

science and engineering. Progress in Materials Science 57, 1383–1425.
Patala, S., Schuh, C.A., 2011. A continuous and one-to-one coloring scheme for misorientations. Acta Materialia 59,

554–562.
Saheli, G., Garmestani, H., Adams, B.L., 2005. Microstructure design of a two phase composite using two-point

correlation functions. Journal of Computer-Aided Materials Design 11, 103–115.
Sintay, S.D., Adams, B.L., 2005. Microstructure Design for a Rotating Disk: With Application to Turbine Engines,

in: Volume 2: 31st Design Automation Conference, Parts A and B, ASME. pp. 823–834.

19


