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Abstract 5 

Performance of full-culm bamboo structures is dominated by longitudinal splitting behaviour, often 6 

exacerbated by connection details. This behaviour is a function of the transverse properties of this highly 7 

orthotropic material. Considerable study of the longitudinal properties of bamboo is available in which it 8 

is often concluded that bamboo may be considered as a fibre-reinforced composite material and material 9 

properties may be assessed using rule-of-mixture methods. Nonetheless, few studies have addressed the 10 

transverse properties of the bamboo culm wall, despite these largely governing full-culm behaviour. This 11 

study investigated the transverse material property gradient through the culm wall and attempts to connect 12 

the mechanical results to physical observations and phenomena. Most importantly, the study demonstrates 13 

that the complex transverse behaviour of bamboo does not appear to behave as a classic fibre-reinforced 14 

composite material in the direction transverse to the fibres. In this study, five different bamboo species, 15 

Phyllostachys edulis, Phyllostachys bambusoides, Phyllostachys meyeri, Phyllostachys nigra, and 16 

Bambusa stenostachya were tested using a modification of the flat-ring flexure test to obtain a measure of 17 

the transverse tensile capacity of the bamboo. Microscopy analyses are used to qualitatively describe the 18 

culm wall architecture and to quantitatively assess the failure modes through the culm wall thickness. 19 
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1. Introduction 24 

A functionally graded, natural fibre-reinforced material [Ghavami et al 2003], bamboo has evolved in 25 

nature to efficiently resist environmental loads. Bamboo has been shown to have mechanical properties 26 

comparable to those of conventional building materials and its worldwide availability gives it great 27 

potential as an alternative building material. Rapid growth (mature in 3 to 5 years followed by a 2 to 3 28 

year harvest cycle), very low fertilizer requirement (typically none) and the ability to replace conventional 29 
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materials that are resource and energy intensive, combine to make bamboo a potentially sustainable 30 

material in terms of both ‘carbon footprint’ and social equity. Bamboo offers versatility for use in a broad 31 

range of international contexts, from use as an affordable and sustainable material in developing countries 32 

to rapidly-deployable structures for disaster relief, to mainstream or niche construction in wealthier 33 

countries. 34 

The structure of bamboo is composed of culms (stalks) with solid transverse diaphragms or ‘nodes’ 35 

separating hollow inter-nodal regions along its height (Figure 1a). The circular cross section (Figures 1b-36 

d) is composed of unidirectional cellulosic fibres oriented parallel to the culm’s longitudinal axis 37 

embedded in a parenchyma tissue matrix [Grosser and Liese 1971]. The parenchyma tissue matrix 38 

lignifies (hardens) as the culm matures leading to increased density and improved mechanical properties. 39 

As a functionally graded material, bamboo has evolved to resist its primary loading in nature: its own 40 

self-weight and the lateral effects of wind. As seen in Figure 1c, the density of fibres increases from the 41 

inner culm wall to the outer culm wall. The wall thickness is largest at the base of the culm and decrease 42 

with height up the culm. However, the size and quantity of vessels decrease with the height of the culm 43 

and are replaced with bamboo fibres. This addition of fibres compensates for loss in strength and stiffness 44 

due to reductions in diameter and wall thickness near the top of the culm, resulting in relatively uniform 45 

engineering properties along the entire culm height [Amada 1996; Harries et al. 2017]. Like any fibre-46 

reinforced material, mechanical properties are highly correlated to the proportion and distribution of 47 

fibres in the cross section. Mechanical properties are influenced by density, which depends on fibre 48 

content, fibre diameter, and cell wall thickness [Janssen 2000]. The density of most bamboo is 700 – 800 49 

kg/m3 depending on species, growing conditions, and position along the culm. The volume fraction of 50 

fibres ranges from approximately 60% at the exterior face of the culm wall to 10-15% near the interior 51 

face (Figure 1c). The variation in density through the culm wall has been assumed by various researchers 52 

to be linear, quadratic, exponential, or a power function and is known to be species-dependent [Amada et 53 

al. 1996 and 1997]. Table 1 summarises fibre volume distributions reported in the literature in addition to 54 

gross section and inner and outer wall fibre volume ratios (Vf) and longitudinal moduli (EL). Due to the 55 

complex variation of the fibres and vascular bundles, the variation of material properties through the 56 

culm-wall thickness has been shown to be significant [Richard and Harries 2015] and to have the effect of 57 

increasing gross culm stiffness by about 10% as compared to an assumed uniform distribution of the same 58 

volume of fibers [Janssen 2000]. Harries et al. [2017], in a more refined analysis, showed the effect of 59 

fibre gradient on gross culm stiffness to result in about a 5% increase for thin-walled culms (D/t < 8) and 60 

as much as 20% for thick-walled culms (D/t > 8; where D is the culm outer diameter and t is the culm 61 

wall thickness). 62 



In general, while highly variable, the longitudinal behaviour of bamboo is relatively well understood in a 63 

qualitative sense. From an engineering perspective, the longitudinal behaviour is most typically 64 

considered as a fibre-reinforced material in which longitudinal properties are obtained using a rule of 65 

mixtures approach. For example, gross section modulus, EL, is estimated from: 66 

 EL= VfEf + (1 – Vf)Em        Eq. 1 67 

Where Vf is the fibre volume ratio and Ef and Em are the moduli of the fibre and matrix (parenchyma) 68 

phases, respectively. Janssen (2000) reports typical values of Ef  = 35 GPa and Em = 1.8 GPa.  69 

The dominant failure mode of bamboo, however, is longitudinal splitting associated with bamboo 70 

carrying flexure, compression or tension loads; splitting is exacerbated by the use of simple bolted 71 

connection details common in some bamboo construction [Sharma et al. 2012]. Janssen [1981] describes 72 

the bending stresses in a culm as being characterised by the longitudinal compressive stress and 73 

transverse strain in the compression zone of the culm, with failure eventually occurring due to 74 

longitudinal splitting. This is ideally a Mode II7 longitudinal shear failure. However, in the presence of 75 

perpendicular stresses (as is the case where ever there is a non-zero shear-to-moment ratio), there is some 76 

Mode I component stress which significantly reduces the Mode II capacity. Richard et al. [2017] 77 

demonstrate the effects of such mode mixity using longitudinal shear tests [ISO 2004] which capture pure 78 

Mode II behaviour, split pin tests [Mitch et al. 2010] which capture Mode I behaviour, and culm bending 79 

tests of different spans resulting in different degrees of mode mixing. For two different species, a thin 80 

walled P. edulis and thick-walled B. stenostachya, the split pin tests resulted in Mode I capacities equal to 81 

only 18% of the Mode II capacity determined from the longitudinal shear tests. Beam tests having mixed 82 

mode behaviour exhibited shear capacities ranging from 40-70% of the Mode II capacity.  83 

Both the Mode I and II behaviours described are primarily functions of the transverse properties of the 84 

fibre-reinforced culm which are believed to be dominated by matrix (parenchyma) properties. Despite 85 

their importance in the dominant observed behaviour of full-culm bamboo, there are few studies of the 86 

transverse properties of the culm wall. In early work, Arce-Villalobos [1993] concluded that there is no 87 

correlation between the density of bamboo and its transverse tensile strength. Janssen [2000], based on 88 

flexural tests, reports that a transverse strain of 0.0013 results in transverse tensile failure of the culm wall 89 

(with no indication of species or other variation). More recently, test methods have been proposed for 90 

obtaining transverse properties of bamboo culms [Mitch et al. 2010; Sharma et al. 2012; Virgo et al. 91 

2017] although these have not yet been widely adopted to obtain material properties over a range of 92 

species and conditions. Sharma and Harries [2012] report a unique attempt to refine an edge bearing test 93 

to determine through culm-wall distribution of properties. In this study, the culm was cut, using a water 94 
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jet, into two or three concentric annular sections. Edge bearing test results for each resulting ‘ring’ 95 

provided an improved measure of through-thickness transverse properties than could be obtained from a 96 

single full-culm section. The approach was limited to thicker culm walls, provided only two or three data 97 

points across the culm wall and did not result in repeatable specimens and was therefore abandoned. 98 

Tan et al. [2011] conducted a micro-scale study on the crack growth and toughening mechanisms of P. 99 

edulis. The study revealed that toughening was inversely related to fibre density. The authors noted that 100 

their results suggest the need to account for the anisotropic strength and fracture properties of bamboo in 101 

the design of bamboo structures. 102 

In order to understand the transverse behaviour of bamboo, it is informative to consider laminate theory 103 

and the rule of mixtures for transverse properties: 104 

 ET = [Vf/Ef + (1 – Vf)/Em]-1       Eq. 2 105 

Equation 2 is conventionally considered a lower-bound estimate of transverse properties since it does not 106 

account for the anisotropic nature of the fibre itself and, as a result, underestimates off-longitudinal 107 

properties [Mallick 2008]. The Halpin-Tsai equations [Halpin and Kadros 1976] are most often adopted 108 

to describe transverse behaviour of fibre-reinforced composites: 109 

 ET = Em(1 + ξnVf)/(1-nVf)       Eq. 3 110 

Where n = (Ef/Em – 1)/(Ef/Em + ξ)       Eq. 4 111 

The value of ξ is an empirical constant fitted to the elasticity solution for a fibre geometry and confirmed 112 

by experimental data [Halpin and Kadros 1976]: 113 

 ξ = 2 + 40Vf
10         Eq. 5 114 

When considering transverse properties of longitudinally reinforced fibre composites having Vf less than 115 

0.5, it is conventional to assign ξ = 2 [Hewitt and de Malherbe 1970]. Halpin-Tsai is equally applicable to 116 

determining longitudinal properties. For longitudinal properties of long continuous fibre composites (such 117 

as bamboo) however, Halpin-Tsai results in the same relationship as the rule-of-mixtures (Eq. 1). 118 

Figure 2 presents theoretical longitudinal and transverse modulus distributions determined using the rule 119 

of mixtures and Halpin-Tsai, respectively (Equations 1 and 3). The fibre volume distribution illustrated is 120 

that proposed by Dixon and Gibson [2014] for P. edulis and is representative of most distributions 121 

reported in Table 1. The modulus distributions shown are normalised by the average modulus for the 122 

culm wall which is what should be obtained when testing a full-culm specimen (i.e., the apparent modulus 123 

of the gross section). In addition to the variation in properties, a shift of the neutral axis of the section (at 124 

which location ratios equal unity) toward the outer culm wall is evident. This shift results in the increase 125 

in gross culm stiffness described previously [Janssen 2000; Harries et al. 2017]. 126 

The objective of the present study is to investigate the transverse material property gradient through the 127 

culm wall and to connect the mechanical results to physical results, such as fibre density. In this study, a 128 



modification to the flat-ring flexure [Virgo et al. 2017] test specimen, in which only portions of the culm 129 

wall cross-section are tested, is used to obtain a measure of the transverse tensile capacity of the bamboo. 130 

Microscopy analyses are used to qualitatively describe the culm wall architecture and to quantitatively 131 

assess the failure modes through the culm wall thickness. Throughout this study, all data is also 132 

normalised by culm wall thickness (x = 0 is the inner wall and x = 1 is the outer wall). 133 

2. Flat-ring Flexure Test 134 

The flat ring flexure test [Virgo et al. 2017] assesses the tendency of bamboo to fail via longitudinal 135 

cracks using a full cross-sectional specimen that is L ≈ 0.2D in length. The specimen is subjected to 4-136 

point flexure as shown in Figure 3. The desired failure for this test occurs in the constant moment region. 137 

The flat ring flexure test gives the apparent modulus of rupture of the specimen (fr) which, due to 138 

specimen geometry, is related to the transverse tension capacity of the bamboo. The modulus of rupture is 139 

calculated from the test results as: 140 

fr = 3Pa/(tN + tS)L
2          Eq. 5 141 

Where P is total load applied to specimen; a is the shear span; tN and tS are culm wall thickness at the 142 

failure locations on either side of the culm; and L is the length of culm section tested (i.e., the flexural 143 

depth of specimen). A practical test span is found to be approximately S = 0.85D and the shear span 144 

should be at least 0.33S. This test is easily translated to a field setting, requiring only two loading plates, 145 

four pins, and free weights, rather than a hydraulic press. Nonetheless, in this study, all tests were carried 146 

out in a mechanically driven universal test machine. Tests are conducted in displacement control at a rate 147 

of crosshead travel of 0.76 mm/min resulting in failure in between 1 and 5 minutes. Loads are obtained 148 

using a load cell with a precision of ± 0.4N. A specimen loading apparatus (Figure 3b) is used to ensure 149 

accurate and repeatable specimen alignment. With this apparatus, test span and shear span can be varied 150 

independently in increments of 5 mm. Prior to this study, the flat-ring flexure test has been used on only 151 

full-culm cross sections. Such full-culm cross section specimens are referred to in this work as the control 152 

specimens and the modulus of rupture thus obtained is denoted frC. 153 

2.1 Clipped Flat-ring Test Specimens 154 

This study adopts a modification to the flat-ring test specimen, in which only portions of the cross-section 155 

are tested in order to determine the effect of the material property gradient through the culm wall. The 156 

culms were cut into full cross-section specimens approximately 0.2D in length. Approximately 20 157 

specimens were obtained from each internode and all specimens are obtained from three or four adjacent 158 

internodes. In this way it can reasonably be assumed that there is little variation in properties among 159 

specimens. Importantly, there is little variation in D and t among the samples used. ‘Clipped’ specimens 160 

(Figure 4a) had test regions machined using an end mill (Figure 4b). Specimens were machined such that 161 

α ≈ 0.20t or 0.25t and β and γ are in increments of approximately 0.20t or 0.25t such that the sum α + β + 162 



γ = t, the culm wall thickness. This approach divides the culm wall into segments for which the modulus 163 

of rupture determined from each segment is calculated from Eq. 6 and is assumed to represent the average 164 

value for that segment; the value is then assigned to the centroid of the segment.  165 

fr = 3Pa/( αtN + αtS)L
2          Eq. 6 166 

The machining was controlled such that α and β at both the N and S quadrant are the same in each 167 

specimen (as a result, γ may differ slightly based on variation of t in the cross section). All as-tested 168 

dimensions were recorded and these are used in individual calculations of specimen capacity. Control 169 

specimens were not clipped; thus α = t and β = γ = 0. The results from the control specimens represent the 170 

gross cross-section modulus, frC, against which the clipped-specimen data is normalised. 171 

3. Specimen Materials  172 

Five different bamboo species were tested in this study, Phyllostachys edulis, Phyllostachys bambusoides, 173 

Phyllostachys meyeri, Phyllostachys nigra, and Bambusa stenostachya. All are thin-walled (D/t generally 174 

greater than 8) except B. stenostachya which is a thick-walled species. All Phyllostachys culms were 175 

obtained from a commercial importer and were water treated and kiln dried. The B. stenostachya was 176 

commercially imported from Vietnam and was borax treated.  177 

In order to place the materials reported in this study in the context of the broader literature, standard 178 

longitudinal compression and longitudinal shear (so-called “bow-tie” test) tests (ISO 22157:2019) of all 179 

species were conducted; the results are reported in Table 2.  Bamboo density normalized for 12% 180 

moisture content, ρ12, (ISO 22157:2019) is also reported in Table 2. Specimens had been stored in a 181 

laboratory environment for some time prior to testing; the moisture content of all specimens at time of 182 

testing was between 13% and 15% as measured with an electronic (pin-type) moisture meter (Table 2). 183 

The objective of this study is to assess the effects of through-culm wall fibre distribution. In order to limit 184 

– to the extent possible – material variation, all specimens reported in this paper were taken from the 185 

lower region of only a few culms coming from the same batch of each species. Test specimens were cut 186 

from within 2 m of each other and included 0.2D long specimens for flat ring flexure and 1.0D long 187 

specimens for compression and longitudinal shear testing. Adjacent samples were used for control and 188 

clipped specimens. At least 30 control specimens were tested for each species and as many as 6 189 

specimens of each clipped case were tested (n in Tables 3 and 4). Average culm diameter, D, and wall 190 

thickness, t, for each group of samples are reported with the summary of test results in Tables 3 and 4.  191 

3.1 Fibre Distribution 192 

Seven full-culm cross sections (four for B. Stensostachya) were selected and digital images were taken at 193 

each of the four quadrants (N, S, E and W). These images were processed using a purpose-built MatLab 194 

script to obtain the distribution of fibres through the wall cross section. An example of a collected image 195 

and resulting MatLab pixel map is shown in Figure 5. The collected images are square, having a 196 



dimension equal to the culm-wall thickness, t (Figure 5a). The image is divided in the through-thickness 197 

direction into ten equal regions of thickness t/10 (Figure 5b) and the fibre volume ratio obtained for each 198 

(Figure 5c).  From this analysis, the average fibre distribution (expressed as third-order polynomial best-199 

fit curves) is obtained as summarised at the bottom of Table 1 in terms of the normalised culm wall 200 

thickness, x (x = 0 is the inner culm wall and x = 1 is the outer culm wall). The coefficient of variation of 201 

measured fibre volume ratios was less than 0.18 for all but P. nigra, which exhibited a COV = 0.24. The 202 

28 P. edulis samples shown in Figure 5c have a COV = 0.13. The best-fit equations representing fibre 203 

volume distribution reported in Table 1 all have a coefficient of determination R2 = 0.99.  204 

The fibre distribution among the four thin-wall Phyllostachys species is very similar. Indeed, a single 205 

relationship could be given for all four species having R2 = 0.96 as shown in Table 1. A marked 206 

difference in fibre distribution is observed in the thick-walled B. stenostachya. Thus, fibre distribution is 207 

observed to differ by genera (Phyllostachys and Bambusa) but less so among species in the same genera 208 

(Phyllostachys). 209 

4. Full-wall Thickness Flat-Ring Flexure Test Results 210 

Modulus of rupture, frC, (Eq. 5) determined for the full-culm control specimens is reported in Table 3. 211 

Within the genus Phyllostachys, these values are similar and notably greater than that observed for B. 212 

stenostachya. Observed variation of test results is typical of bamboo and similar to that reported in Virgo 213 

et al. [2017]. As recommended by Virgo et al., only specimens failing within the constant moment region 214 

(Figure 3a) are included in the reported data. Additionally, outliers defined as data falling outside 1.5 215 

times the interquartile range (so called Tukey fences (Hoaglin 2003)), were excluded from the reported 216 

data. 217 

5. Clipped Flat-ring Test Results 218 

Experimentally determined values of normalised fr/frC determined from the clipped tests are shown in 219 

Figure 6 and the corresponding best fit second-order polynomial relationships are reported in Table 3. 220 

These all illustrate a similar trend although P. nigra specimens exhibit relatively little variation through 221 

the culm wall compared to the other species. With the clipped specimens, all failures occurred in the 222 

clipped region and no data was determined to be an outlier.  223 

6. Effect of Outer Layer of Bamboo Culm 224 

Integrating the fr/frC best-fit curves (Table 3) from x = 0 to x = 1 should represent the gross modulus 225 

across the section; that is, the integral ∫fr/frCdx should equal unity. However, as shown in Table 3, with the 226 

exception of P. meyeri, the gross modulus obtained by integrating the clipped data exceeds unity by as 227 

much as 20%. A possible explanation for this behaviour – one in which the sum of the parts exceeds the 228 

capacity of the whole – is that failure of the full wall section control specimens is being initiated by a 229 



‘weak link’. A brittle failure of the outer layer of the culm wall initiating failure would explain this 230 

observation. 231 

The extreme outer layer of a bamboo culm consists of a silica-rich outer skin (epidermis) and a thin 232 

region of densely packed fibres (this can be seen at the top of Figure 5). It is believed that this layer will 233 

be more brittle than the rest of the culm wall and may help to initiate failures in specimens in which the 234 

outer wall is included. Therefore in the clipped specimen testing a question arises: is the outer layer 235 

contributing disproportionately to the observed behaviour, especially to the control and β = 0 tests? To 236 

investigate this effect, additional specimens were tested having β ≈ 0.05t and α ≈ 0.95t (i.e. γ = 0, see 237 

Figure 4a); essentially, these are full-culm sections with only the outer layer ‘shaved’ away.   238 

Twenty flat-ring flexure specimens were cut from comparable samples of each species tested in the 239 

clipped test program (P. edulis was not included as there were no comparable specimens available). 240 

Alternating specimens along the culm were prepared using a belt sander such that β ≈ 0.05t and α ≈ 0.95t 241 

(Figure 4a). Resulting wall thicknesses in the constant moment region are reported in Table 4. Apart from 242 

specimen preparation, all tests were identical to those reported previously. To assess potential changes in 243 

specimen ductility, displacement of the applied load, δ, was measured and reported at failure of each 244 

specimen. Results are presented in Table 4. Also shown in Table 4 is the p-value determined from an 245 

unpaired t-test for each set of ‘shaved’ and unshaved specimen. The p-value is the probability that there is 246 

no statistically significant difference between the compared conditions.   247 

It is seen that the modulus of rupture, fr, is essentially unaffected by the removal of the outer layer. With 248 

the exception of P. nigra, the displacement at failure is observed to increase upon the removal of the outer 249 

layer. This increase is greater than can be attributed to the loss of 5% of the moment of inertia of the cross 250 

section (resulting from shaving the specimen) alone. To consider the observed behaviour in a normalised 251 

fashion, the tangent ‘stiffness’, fr/δ is also calculated. As seen in Figure 7, specimen stiffness (represented 252 

as linear best-fit line in Figure 7) falls on the order of 15 to 30% (with the exception of P. nigra) despite 253 

the moment of inertia being reduced only 5%. The modulus of rupture itself remains unchanged. 254 

7. Discussion of Observed Transverse Behaviour 255 

The data shown in Figure 6 and equations reported in Table 3 indicate a generally parabolic distribution 256 

of modulus of rupture through the culm wall thickness with higher values at both the inner and outer 257 

walls and a minimum near the middle of the wall thickness. The fibre volume distributions, also shown in 258 

Figure 6 and given in Table 1, indicate a typically observed distribution having few fibres at the inner 259 

wall and a greater volume fraction at the outer wall. Based on these fibre distributions, the predicted 260 

distribution of modulus of rupture using the Halpin-Tsai equation (Equation 3) does not appear to capture 261 

the experimentally observed behaviour, particularly in the inner half of the culm wall where fibre volumes 262 



are lowest. Bamboo does not appear to be behaving as a classic fibre-reinforced composite material in the 263 

direction transverse to the fibres. 264 

The observed behaviour requires further study and may represent a material variation or morphological 265 

variation through the bamboo culm wall thickness. To investigate this further, the failure planes of full-266 

culm wall thickness control specimens were investigated using a scanning electron microscope (SEM).  267 

Figure 8 shows an SEM image of a typical P. edulis vascular bundle (near the outer culm wall) showing 268 

the fibre bundles comprised of microfibrils surrounding the vessel and the parenchyma into which the 269 

bundle is embedded. In Figure 8, the fibre bundle can be seen to be penetrated by intra-fibril cracks 270 

whereas the interfaces between fibres and parenchyma appear quite intact. It is noted that the parenchyma 271 

cell walls are relatively thick indicating a relatively mature culm age [at harvest] (Liese and Weiner 272 

1996). The cracking of the fibres may therefore be a function of culm age (observed although not 273 

described by Liese and Weiner). The age at harvest of the bamboo used in this study is unknown and 274 

without comparative images, age cannot be estimated. Liese and Weiner (1996), however clearly describe 275 

and Liese (1998) illustrates the thickening of the parenchyma wall with age. Alternatively, these cracks 276 

may have formed as a result of shrinkage associated with drying (desiccation of the vessel) or treatment 277 

of the bamboo. Chen et al (2018) clearly describes different behaviour of the parenchyma and interaction 278 

between the parenchyma and fibres based on moisture content. Orsorio et al. (2018) argues that these 279 

cracks result for extraction and preparation of the SEM sample. Further study will be made to address the 280 

source of these cracks – which are relatively commonly seen – as they represent a stress raiser in the 281 

adjacent parenchyma and may be the source of cracks in the parenchyma. Such an effect is shown in an 282 

image in Chen et al. (2018) although not described by the authors. 283 

Figure 9 shows SEM images taken from the failure plane of a flat-ring flexure test specimen. Each failure 284 

plane was divided into a grid and images of each obtained, allowing the entire failure plane to be imaged. 285 

The images shown in Figures 9b and 9c are typical of images obtained at the outer and inner walls, 286 

respectively, of a P.edulis specimen obtained slightly above the neutral axis of the section in flexure (see 287 

Figure 9a). Image features did not vary considerably based on their location through the depth of the 288 

specimen (dimension L in Figure 9a). 289 

In Figures 9b and 9c the failure plane can be seen to both follow the edge of the fibre bundles but also to 290 

go through the bundles themselves – presumably propagating along the cracks observed in Figure 8. In 291 

some locations, the failure plane can be seen to expose the vessels (voids) surrounded by the bundle. 292 

Where it is seen at the failure plane, the interface between the parenchyma and the fibre bundle appears 293 

intact. This supports the observation that the cracks in the fibre bundle initiate cracks in the parenchyma. 294 

In such a case the failure plane represents the propagating crack and little damage would be expected at 295 



interfaces parallel to the crack plane. Similar behaviour is reported by Chen et al. (2018) as the 296 

propagation of cracks through the parenchyma but around the mircofibrils comprising the fibre bundle. 297 

Additionally, the parenchyma shown in Figures 9b and 9c, appear to be behaving differently. Near the 298 

outer culm wall (Figure 9b), the failure appears to follow the interfaces between parenchyma cells. Near 299 

the inner culm wall (Figure 9c), the failure plane often appears to pass through the parenchyma cells (seen 300 

as non-intact cell walls in Figure 9c). This observation is typical of all images obtained in this study. 301 

Indeed, near the outer culm wall, the parenchyma is occasionally observed to fail in ‘sheets’ of intact cells 302 

as shown in Figure 10a. In other images (Figure 10b) the intact parenchyma close to the inner culm wall 303 

appear ‘desiccated’: the intact cell wall appears to be ‘caving in’ or concave rather than being slightly 304 

convex nearer the outer culm wall (Figure 8). This observation may suggest a gradient in moisture content 305 

through the culm wall or a residual effect of moisture gradient during the drying process – recall that the 306 

P. edulis was kiln-dried. Such a gradient should be expected. The bamboo culm epidermis is relatively 307 

impermeable and resistant to wetting whereas the inner culm wall is permeable (Liese 1998, Yao et al. 308 

2011). The effects of moisture content, 0%, 6% and 20%, on parenchyma behaviour of P. edulis has been 309 

recently reported by Chen et al. (2018) who attribute increased toughness – particularly of the 310 

parenchyma matrix, with increased moisture content.  311 

The longitudinal aspect ratio of the parenchyma cells can be seen to be different in the outer (Figure 10a) 312 

and inner (Figure 10b) regions of the culm wall. In recent work, Zeng et al. (2019) identified significantly 313 

different morphology of parenchyma cell walls through the culm wall thickness of P. edulis samples. 314 

Near the outer culm wall, parenchyma cell walls were tightly packed laminar structures with little annular 315 

space at interstices (Figure 11c). Nearer the inner culm wall, the laminar structure of the cell wall was 316 

separating and a larger triangular pore is present at parenchyma cell interstices (Figure 11a). It is unclear 317 

how these differences impact the behaviour illustrated in Figure 9 but it is evident that parenchyma is not 318 

homogeneous through the cross section. Neither Zeng et al. (2019) nor Liese (1998) provide insight on 319 

the source of this inhomogeneity and the present authors can only speculate on its cause, although it does 320 

appear to affect the through thickness mechanical behaviour of the culm wall.  321 

8. Conclusion 322 

This study investigated the transverse material property gradient through the bamboo culm wall and 323 

attempts to connect the mechanical results to physical observations and phenomena. Most importantly, 324 

the study demonstrates that the transverse behaviour is complex and that bamboo does not appear to 325 

behave as a classic fibre-reinforced composite material in the direction transverse to the fibres. 326 

In this study, a modification to the flat-ring flexure test specimen, in which only portions of the culm wall 327 

cross-section are tested, is used to obtain a measure of the transverse tensile capacity of the bamboo. 328 



Microscopy analyses are used to qualitatively describe the culm wall architecture and to quantitatively 329 

assess the failure modes through the culm wall thickness. The following conclusions are made: 330 

1. Fibre volume distribution through the culm wall was best described by third-order polynomial curves 331 

and the COV was observed to be on the order of 0.20 in all cases. Fibre distribution and modulus of 332 

rupture, frC, among the four thin-wall Phyllostachys species was very similar, while the same values 333 

for B. stenostachya was markedly different.  334 

2. The gross modulus obtained by integrating the clipped data exceeds the experimentally determined 335 

value of frC by as much as 20%; that is, the sum of the parts exceeds the capacity of the whole culm. 336 

3. The silica-rich epidermal layer of the culm wall appears to disproportionately affect the full-culm 337 

modulus, frC.  Full-culm specimens were tested without this layer and the modulus of rupture was 338 

essentially unaffected. The stiffness of the specimens tested without the epidermal layer was reduced 339 

considerably more than the small reduction in geometry implies. 340 

4. The distribution of fibre volume and modulus of rupture though the culm wall thickness are shown to 341 

not be correlated by conventional assumptions of fibre-reinforced composite material behaviour. The 342 

Halpin-Tsai equation (Equation 3) does not appear to capture the experimentally observed behaviour, 343 

particularly in the inner half of the culm wall where fibre volumes are lowest. 344 

Scanning electron microscopy (SEM) images of the flat-ring flexure tests failure surfaces reveal a 345 

complex behaviour that is not consistent with the assumptions of fibre-reinforced composite behaviour. 346 

The following is observed: 347 

5. Failure planes generally pass through the fibre bundles, affected by the vessels (voids) contained in 348 

the bundles and cracking between individual fibres comprising the bundles. In general, the interface 349 

between fibres and parenchyma (matrix) remains intact. 350 

6. Failure within the parenchyma also varies based on location through the culm wall. Near the outer 351 

culm wall, the failure appears to follow the interfaces between parenchyma cells however near the 352 

inner culm wall, the failure often appears to pass through the parenchyma cells.  353 

7. Morphologic characteristics of the parenchyma are seen to vary through the culm wall thickness 354 

although it is unclear how these differences impact behaviour. 355 

Considerably more research is required to understand the source of the variation in parenchyma structure 356 

and its effect on mechanical properties of the bamboo culm. The variation may simply be the natural 357 

morphology of the bamboo but may also arise from drying, curing and/or treatment processes. While 358 

gross section properties are most important for full-culm bamboo construction, variation of properties 359 

through the culm wall may be critical to the performance of laminated bamboo products, particularly 360 

those employing tangentially cut strips such as glue-laminated bamboo and cross laminated bamboo 361 

[Sharma et al. 2015]. 362 
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Table 1 Summary of through-culm wall fibre volume and modulus distributions. 456 

ref1 method2 species 

B 

M 

T3 

gross section interior (x = 0) exterior (x = 1) 

proposed relationship 
Vf 

EL 

(GPa) 
Vf 

EL 

(GPa) 
Vf 

EL 

(GPa) 

1, 2 IA general nr 0.40 - 0.20 - 0.60 - Vf = 0.40x + 0.20 

3 
Vf: IA 

EL: RoM 
P. edulis 

B - 9.1 0.09 2.5 0.77 22.6 exponential Vf 

EL = (EL,x=0)e2.2x T - 13.7 0.11 3.8 0.88 33.8 

4 
Vf: IA 

EL: tens 
P. edulis 

B 0.25 - 0.17 4 0.50 29 

exponential Vf and EL M 0.28 - 0.18 6 0.56 30 

T 0.34 - 0.10 6 0.60 32 

5 IA P. edulis nr 0.28 - 0.12 - 0.62 - Vf = 0.49x2 + 0.0066x + 0.12 

5 IA D. giganteus 

B 0.42 - 0.29 - 0.53 - Vf = -0.09x2 + 0.33x + 0.29 

M 0.43 - 0.21 - 0.62 - Vf = 0.07x2 + 0.29x + 0.26 

T 0.43 - 0.19 - 0.60 - Vf = -0.12x2 + 0.51x + 0.21 

6 
Vf: SEM 

EL: tens 
G. angustifolia 

B 0.26 16.0 0.19 - 0.62 - Vf = 0.83x2 –0.41x + 0.19 

M 0.26 14.6 - - 0.54 - Vf = -1.02x3 + 2.61x2– 1.38x + 0.33 

T - 13.2 - - 0.54 - Vf = -4.13x4 + 9.68x3 – 6.68x2 + 1.71x – 0.04 

7 tens P. edulis M - - 0.12 4.5 0.54 21 EL = 40.13Vf + 0.22 

8 nano P. edulis nr - - - 6.5 - 13.8 none reported 

9 SEM P. edulis 

B 0.21 - 0.06 - 0.52 - Vf = (0.23x + 0.71)(0.09e1.83x)  

M 0.23 - 0.06 - 0.58 - Vf = (0.23x + 0.71)(0.09e1.48x) 

T 0.26 - 0.06 - 0.69 - Vf = (0.23x + 0.71)(0.09e2.11x) 

10 
Vf: SEM 

EL: nano 

P. edulis nr - 14.9 0.07 - 0.58 - 

none reported G. angustifolia nr - 19.7 0.16 - 0.60 - 

B. stenostachya nr - 13.8 0.05 - 0.42 - 

11 flex P. edulis nr - 8.7 - 2.8 - 15.2 EL = 12.43x0.43 + 2.78 

12 
Vf: SEM 

EL: tens 

D. giganteus M - - 0.38 17.6 0.55 30.7 
culm wall divided into thirds 

at x = 0.5 - - 0.45 27.3 - - 

this 

study 
IA 

P. edulis B 0.29 - 0.12 - 0.67 - Vf = 1.41x3 – 1.23x2 + 0.50x + 0.10 

P. bambusoides B 0.32 - 0.14 - 0.65 - Vf = 0.96x3 – 0.91x2 + 0.57x + 0.10 

P. nigra B 0.26 - 0.07 - 0.64 - Vf = 0.94x3 – 0.63x2 + 0.36x + 0.06 

P. meyeri B 0.35 - 0.11 - 0.70 - Vf = 0.15x3 + 0.34x2 + 0.17x + 0.11 

B. stenostachya B 0.35 - 0.24 - 0.64 - Vf = 1.75x3 – 1.98x2 + 0.75x + 0.20 

all four 

Phyllostachys 
B - - - - - - Vf = 0.86x3 – 0.61x2 + 0.40x + 0.09 

x = normalized dimension through culm wall; Vf = fibre volume ratio; EL = longitudinal tensile modulus of elasticity 
1references: 1 = Janssen 1981; 2 = Vaessen and Janssen 1997; 3 = Nogata and Takahasi 1995; 4 = Amada et al. 1996; 5 = Ghavami et al. 2003; 6 = 

Ghavami and Marhinho 2005; 7 = Shao et al. 2010; 8 = Tan et al. 2011; 9 = Dixon and Gibson 2014; 10 = Dixon et al. 2015; 11 = Habibi et al. 2015; 

12 = Krause et al. 2016 
2 methods of determining data: IA = image analysis; SEM = scanning electron microscope; RoM = rule of mixtures; tens = tension tests; nano = 

nanoindentation; flex = flexural tests 
3 locational along height of culm: B = bottom; M = middle; T = top; nr = not reported 
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Table 2 Mechanical properties bamboo used in this study (COV in parentheses). 459 

species 

density at 12% 

MC, ρ12 

moisture content at 

time of test 

compressive 

strength, fc 

longitudinal shear 

strength, fv 

kg/m3 % MPa MPa 

P. edulis 896 (0.01) 14.0 48.1 (0.20) 15.1 (0.11) 

P. bambusoides 818 (0.04) 14.6 59.3 (0.26) 14.6 (0.22) 

P. nigra 907 (0.02) 14.8 45.2 (0.13) 14.6 (0.16) 

P. meyeri 840 (0.04) 13.7 55.8 (0.11) 16.4 (0.05) 

B. stenostachya 616 (0.03) 13.0 46.0 (0.21) 9.9 (0.11) 
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Table 3 Summary of experimental results on clipped specimens (COV in parentheses). 462 

species 

full-culm control specimens clipped specimens 

n 
D t frC 

n 
D t 

fr/frC
 ∫

𝑓𝑟
𝑓𝑟𝐶

𝑑𝑥 
mm mm MPa mm mm 

P. edulis 33 
117 

(0.06) 

10.1 

(0.10) 

17.3 

(0.18) 
13 

112 

(0.05) 

9.5 

(0.09) 

4.0x2 – 4.9x + 2.3 

(R2 = 0.82) 
1.18 

P. bambusoides 27 
95.5 

(0.05) 

8.2 

(0.22) 

15.7 

(0.21) 
14 

94.8 

(0.06) 

8.1 

(0.24) 

2.6x2 – 2.5x + 1.5 

(R2 = 0.31) 
1.12 

P. nigra 31 
93.5 

(0.03) 

6.7 

(0.19) 

15.6 

(0.14) 
16 

92.4 

(0.01) 

6.5 

(0.14) 

0.7x2 – 0.8x + 1.4 

(R2 = 0.08) 
1.23 

P. meyeri 49 
65.3 

(0.12) 

6.6 

(0.10) 

20.0 

(0.16) 
20 

65.2 

(0.09) 

6.4 

(0.11) 

2.4x2 – 1.8x + 1.1 

(R2 = 0.59) 
1.00 

B. stenostachya 39 
77.5 

(0.06) 

14.5 

(0.32) 

9.4 

(0.13) 
17 

75.4 

(0.06) 

14.7 

(0.28) 

4.1x2 – 3.6x + 1.6 

(R2 = 0.77) 
1.17 
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Table 4 Summary of results from specimens having outer layer removed (COV in parentheses). 465 

species 
n 

D t 
modulus of 

rupture, fr 
deflection, δ fr/δ 

 mm mm MPa p1 mm p1 MPa/mm p1 

P. bambusoides 10 
99.6 

(0.01) 

6.47 

(0.09) 

18.1 

(0.08) 
0.09 

1.86 

(0.13) 
0.00 

9.9 

(0.14) 
0.01 

outer layer 

removed 
10 

99.8 

(0.01) 

0.92t 

(0.04) 

19.7 

(0.12) 

2.30 

(0.16) 

8.4 

(0.08) 

P. nigra 10 
96.0 

(0.01) 

8.44 

(0.03) 

26.4 

(0.16) 
0.75 

2.10 

(0.09) 
0.59 

12.6 

(0.15) 
0.99 

outer layer 

removed 
9 

95.8 

(0.01) 

0.95t 

(0.02) 

26.0 

(0.06) 

2.06 

(0.06) 

12.6 

(0.06) 

P. meyeri 4 
62.8 

(0.00) 

6.58 

(0.02) 

22.5 

(0.08) 
0.22 

0.95 

(0.20) 
0.06 

25.0 

(0.33) 
0.09 

outer layer 

removed 
5 

62.9 

(0.01) 

0.95t 

(0.02) 

21.0 

(0.07) 

1.21 

(0.14) 

17.6 

(0.14) 

B. stenostachya 7 
71.7 

(0.02) 

15.00 

(0.03) 

13.8 

(0.10) 
0.86 

1.59 

(0.22) 
0.10 

9.3 

(0.30) 
0.13 

outer layer 

removed 
9 

72.2 

(0.02) 

0.95t 

(0.04) 

14.0 

(0.09) 

1.91 

(0.18) 

7.6 

(0.17) 
1 p-values indicate the probability that there is no statistical difference between the compared samples  
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a) longitudinal section of bamboo 

culm showing portions of internodes 

to either side of node 

b) cross section of 

culm near node 

diaphragm 

c) section 

through culm 

wall 

d) vascular 

bundle 

 

Figure 1 Anatomy of bamboo culm showing functionally graded distribution of fibre in culm wall 468 
[adapted from Richard 2013]. 469 
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Figure 2 Distribution of fibres and modulus through culm wall based on rule of mixtures. 473 
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a) test set-up schematic and dimensions b) test being conducted in universal test 

machine (shown: 100 mm diameter culm tested 

over 80 mm span with 25 mm shear span) 

Figure 3 Flat ring flexure test. 475 
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D = culm diameter

0.18D  L  0.22D≤ ≤

0.8D  S  0.9D≤ ≤

a  0.33S≥a S - 2a



 

 

a) test specimen schematic and dimensions b) specimen machining (shown: β = 0, α 

= 0.20t and therefore, γ = 0.80t) 

Figure 4 Flat ring flexure specimen. 479 
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a) image of culm wall b) MatLab pixel map of fibres 

divided into ten layers 

c) fibre volume distribution 

for 28 P edulis samples, Black 

line corresponds to image in 

figures a) and b) 

Figure 5 Example of digital image analysis of culm wall (P.edulis sample shown) 481 
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a) P. edulis b) P. bambusoides 

  

c) P. nigra d) P. meyeri 

 

 

e) B. stenostachya  

Figure 6 Variation of modulus of normalised rupture through culm wall section. 486 
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Figure 7 Comparison of full-culm specimens and those having only outer layer removed.  489 

  490 

0

5

10

15

20

25

30

35

0.00 0.50 1.00 1.50 2.00 2.50 3.00

m
o

d
u

lu
s 

o
f 

ru
p

tu
re

 ,
 f

r
(M

P
a)

Deflection,  d (mm)

full culm

outer layer removed

Linear (full culm)

Linear (outer layer removed)

P. bambusoides

P. nigra

P. meyeri

B. stenostachya



 491 
Figure 8 SEM image of P.edulis vascular bundle 492 
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 495 

Figure 9 Detail of culm wall images of P. edulis specimen 496 
(note that images in parts b and c are not the same specimen as shown in a) 497 
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a) parenchyma between two fibre bundles near outer culm wall 

 
b) parenchyma near inner culm wall 

Figure 10 SEM images of P. edulis parenchyma. 500 
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Figure 11 SEM images of parenchyma cell wall interstices (Zeng et al. 2019) 502 
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