42 research outputs found

    Macrophages in Synovial Inflammation

    Get PDF
    Synovial macrophages are one of the resident cell types in synovial tissue and while they remain relatively quiescent in the healthy joint, they become activated in the inflamed joint and, along with infiltrating monocytes/macrophages, regulate secretion of pro-inflammatory cytokines and enzymes involved in driving the inflammatory response and joint destruction. Synovial macrophages are positioned throughout the sub-lining layer and lining layer at the cartilage–pannus junction and mediate articular destruction. Sub-lining macrophages are now also considered as the most reliable biomarker for disease severity and response to therapy in rheumatoid arthritis (RA). There is a growing understanding of the molecular drivers of inflammation and an appreciation that the resolution of inflammation is an active process rather than a passive return to homeostasis, and this has implications for our understanding of the role of macrophages in inflammation. Macrophage phenotype determines the cytokine secretion profile and tissue destruction capabilities of these cells. Whereas inflammatory synovial macrophages have not yet been classified into one phenotype or another it is widely known that TNFα and IL-l, characteristically released by M1 macrophages, are abundant in RA while IL-10 activity, characteristic of M2 macrophages, is somewhat diminished. Here we will briefly review our current understanding of macrophages and macrophage polarization in RA as well as the elements implicated in controlling polarization, such as cytokines and transcription factors like NFκB, IRFs and NR4A, and pro-resolving factors, such as LXA4 and other lipid mediators which may promote a non-inflammatory, pro-resolving phenotype, and may represent a novel therapeutic paradigm

    Macrophage Migration Inhibitory Factor Enhances Pseudomonas Aeruginosa Biofilm Formation, Potentially Contributing to Cystic Fibrosis Pathogenesis

    Get PDF
    Macrophage migration inhibitory factor (MIF) is a key proinflammatory mediator that we have previously shown to be associated with an aggressive clinical phenotype in cystic fibrosis. It possesses unique tautomerase enzymatic activity. However, to date, no human-derived substrate has been identified that has the capacity to interact with this cytokine\u27s unique tautomerase activity. This led us to hypothesize that MIF may have the capacity to interact with external substrates. We describe for the first time how Pseudomonas aeruginosa can utilize human recombinant MIF (rMIF) to significantly (P \u3c 0.01) enhance its endogenous biofilm formation. Our in vivo studies demonstrate that utilizing a small-molecular-weight inhibitor targeting MIF\u27s tautomerase activity (SCD-19) significantly reduces the inflammatory response in a murine pulmonary chronic P. aeruginosa model. In addition, we show that in in vitro experiments, pretreatment of P. aeruginosa with rMIF is associated with reduced bacterial killing by tobramycin. Our novel findings support the concept of an anti-MIF strategy that targets this enzymatic activity as a potential future antibacterial therapeutic approach.-Tynan, A., Mawhinney, L., Armstrong, M. E., O\u27Reilly, C., Kennedy, S., Caraher, E., Jülicher, K., O\u27Dwyer, D., Maher, L., Schaffer, K., Fabre, A., McKone, E. F., Leng, L., Bucala, R., Bernhagen, J., Cooke, G., Donnelly, S. C. Macrophage migration inhibitory factor enhances Pseudomonas aeruginosa biofilm formation, potentially contributing to cystic fibrosis pathogenesis

    Algorithmic governance: Developing a research agenda through the power of collective intelligence

    Get PDF
    We are living in an algorithmic age where mathematics and computer science are coming together in powerful new ways to influence, shape and guide our behaviour and the governance of our societies. As these algorithmic governance structures proliferate, it is vital that we ensure their effectiveness and legitimacy. That is, we need to ensure that they are an effective means for achieving a legitimate policy goal that are also procedurally fair, open and unbiased. But how can we ensure that algorithmic governance structures are both? This article shares the results of a collective intelligence workshop that addressed exactly this question. The workshop brought together a multidisciplinary group of scholars to consider (a) barriers to legitimate and effective algorithmic governance and (b) the research methods needed to address the nature and impact of specific barriers. An interactive management workshop technique was used to harness the collective intelligence of this multidisciplinary group. This method enabled participants to produce a framework and research agenda for those who are concerned about algorithmic governance. We outline this research agenda below, providing a detailed map of key research themes, questions and methods that our workshop felt ought to be pursued. This builds upon existing work on research agendas for critical algorithm studies in a unique way through the method of collective intelligence

    Investigation of SOA-based wavelength conversion at 80 Gb/s using bandpass filtering

    Get PDF
    This paper presents a simple and effective 80 Gb/s wavelength conversion scheme by using Cross Gain Modulation in a Semiconductor Optical Amplifiers (SOA) in conjunction with filtering the blue shifted component of the probe spectrum to give a non-inverted output signal

    High Cysteinyl Leukotriene Receptor 1 Expression Correlates with Poor Survival of Uveal Melanoma Patients and Cognate Antagonist Drugs Modulate the Growth, Cancer Secretome, and Metabolism of Uveal Melanoma Cells

    Get PDF
    Simple Summary This research investigates the disease relevance and therapeutic potential of cysteinyl leukotriene receptors in uveal melanoma (UM), a rare eye cancer that often spreads to the liver. Unfortunately, there are no therapies available to stop the spread of UM and patients are often faced with an extremely poor prognosis. We assess whether the cysteinyl leukotriene receptors (CysLT(1) and CysLT(2)) are relevant to the progression of UM. Using UM patient samples, we identified that increased levels of CysLT(1) in tumours is associated with reduced patient survival. Using UM cell lines and zebrafish models, we found that drugs targeting CysLT(1), but not CysLT(2), can alter hallmarks of cancer including cell growth, proliferation, and metabolism. This study is the first to examine the relationship of the CysLT receptors with clinical features of UM. Our data strengthen the importance of CysLT signalling in UM and suggest that antagonism of CysLT(1) may be of therapeutic interest in the disease. Metastatic uveal melanoma (UM) is a rare, but often lethal, form of ocular cancer arising from melanocytes within the uveal tract. UM has a high propensity to spread hematogenously to the liver, with up to 50% of patients developing liver metastases. Unfortunately, once liver metastasis occurs, patient prognosis is extremely poor with as few as 8% of patients surviving beyond two years. There are no standard-of-care therapies available for the treatment of metastatic UM, hence it is a clinical area of urgent unmet need. Here, the clinical relevance and therapeutic potential of cysteinyl leukotriene receptors (CysLT(1) and CysLT(2)) in UM was evaluated. High expression of CYSLTR1 or CYSLTR2 transcripts is significantly associated with poor disease-free survival and poor overall survival in UM patients. Digital pathology analysis identified that high expression of CysLT(1) in primary UM is associated with reduced disease-specific survival (p = 0.012; HR 2.76; 95% CI 1.21-6.3) and overall survival (p = 0.011; HR 1.46; 95% CI 0.67-3.17). High CysLT(1) expression shows a statistically significant (p = 0.041) correlation with ciliary body involvement, a poor prognostic indicator in UM. Small molecule drugs targeting CysLT(1) were vastly superior at exerting anti-cancer phenotypes in UM cell lines and zebrafish xenografts than drugs targeting CysLT(2). Quininib, a selective CysLT(1) antagonist(,) significantly inhibits survival (p < 0.0001), long-term proliferation (p < 0.0001), and oxidative phosphorylation (p < 0.001), but not glycolysis, in primary and metastatic UM cell lines. Quininib exerts opposing effects on the secretion of inflammatory markers in primary versus metastatic UM cell lines. Quininib significantly downregulated IL-2 and IL-6 in Mel285 cells (p < 0.05) but significantly upregulated IL-10, IL-1 beta, IL-2 (p < 0.0001), IL-13, IL-8 (p < 0.001), IL-12p70 and IL-6 (p < 0.05) in OMM2.5 cells. Finally, quininib significantly inhibits tumour growth in orthotopic zebrafish xenograft models of UM. These preclinical data suggest that antagonism of CysLT(1), but not CysLT(2), may be of therapeutic interest in the treatment of UM

    Breathlessness and respiratory disability after kidney transplantation

    Get PDF
    Background: Dyspnea is a common symptom in patients with end-stage kidney disease being treated with dialysis. This study aimed to ascertain the level of respiratory disability in patients after kidney transplantation through assessing a cohort of kidney allograft recipients for respiratory compromise and thereby identifying a potential target for therapeutic intervention. Methods: Kidney transplant recipients who were under active observation in a single tertiary referral center were invited to take part in this prevalence study at the time of clinic follow-up. All patients agreed to take part in the study, which involved completing a Medical Research Council (MRC) dyspnea scale, completing the St George's Respiratory Questionnaire, and performing basic spirometry. An MRC score of ≥2 and/or a forced expiratory volume in 1 second <90% predicted prompted formal clinical assessment by a respiratory physician. Results: This study enrolled 103 patients; 35% of all patients reported breathlessness, and 56% of all patients warranted formal respiratory medicine review. After completion of their investigations, 33 patients were found to have an underlying condition accounting for their symptoms. Conclusion: Our study highlights the issues of respiratory disability and breathlessness in patients who have undergone kidney transplantation. Although extensive cardiologic evaluation is performed routinely and can rule out many causes of dyspnea, respiratory assessment is not a preoperative prerequisite. This study could suggest that a formal pulmonological evaluation and basic spirometry should be part of the pretransplant evaluation of the kidney transplant recipient

    Implications for sequencing of biologic therapy and choice of second anti-TNF in patients with inflammatory bowel disease:results from the IMmunogenicity to Second Anti-TNF therapy (IMSAT) therapeutic drug monitoring study

    Get PDF
    BACKGROUND: Anti-drug antibodies are associated with treatment failure to anti-TNF agents in patients with inflammatory bowel disease (IBD).AIM: To assess whether immunogenicity to a patient's first anti-TNF agent would be associated with immunogenicity to the second, irrespective of drug sequence METHODS: We conducted a UK-wide, multicentre, retrospective cohort study to report rates of immunogenicity and treatment failure of second anti-TNF therapies in 1058 patients with IBD who underwent therapeutic drug monitoring for both infliximab and adalimumab. The primary outcome was immunogenicity to the second anti-TNF agent, defined at any timepoint as an anti-TNF antibody concentration ≥9 AU/ml for infliximab and ≥6 AU/ml for adalimumab.RESULTS: In patients treated with infliximab and then adalimumab, those who developed antibodies to infliximab were more likely to develop antibodies to adalimumab, than patients who did not develop antibodies to infliximab (OR 1.99, 95%CI 1.27-3.20, p = 0.002). Similarly, in patients treated with adalimumab and then infliximab, immunogenicity to adalimumab was associated with subsequent immunogenicity to infliximab (OR 2.63, 95%CI 1.46-4.80, p &lt; 0.001). For each 10-fold increase in anti-infliximab and anti-adalimumab antibody concentration, the odds of subsequently developing antibodies to adalimumab and infliximab increased by 1.73 (95% CI 1.38-2.17, p &lt; 0.001) and 1.99 (95%CI 1.34-2.99, p &lt; 0.001), respectively. Patients who developed immunogenicity with undetectable drug levels to infliximab were more likely to develop immunogenicity with undetectable drug levels to adalimumab (OR 2.37, 95% CI 1.39-4.19, p &lt; 0.001). Commencing an immunomodulator at the time of switching to the second anti-TNF was associated with improved drug persistence in patients with immunogenic, but not pharmacodynamic failure.CONCLUSION: Irrespective of drug sequence, immunogenicity to the first anti-TNF agent was associated with immunogenicity to the second, which was mitigated by the introduction of an immunomodulator in patients with immunogenic, but not pharmacodynamic treatment failure

    Implications for sequencing of biologic therapy and choice of second anti-TNF in patients with inflammatory bowel disease:results from the IMmunogenicity to Second Anti-TNF therapy (IMSAT) therapeutic drug monitoring study

    Get PDF
    BACKGROUND: Anti-drug antibodies are associated with treatment failure to anti-TNF agents in patients with inflammatory bowel disease (IBD).AIM: To assess whether immunogenicity to a patient's first anti-TNF agent would be associated with immunogenicity to the second, irrespective of drug sequence METHODS: We conducted a UK-wide, multicentre, retrospective cohort study to report rates of immunogenicity and treatment failure of second anti-TNF therapies in 1058 patients with IBD who underwent therapeutic drug monitoring for both infliximab and adalimumab. The primary outcome was immunogenicity to the second anti-TNF agent, defined at any timepoint as an anti-TNF antibody concentration ≥9 AU/ml for infliximab and ≥6 AU/ml for adalimumab.RESULTS: In patients treated with infliximab and then adalimumab, those who developed antibodies to infliximab were more likely to develop antibodies to adalimumab, than patients who did not develop antibodies to infliximab (OR 1.99, 95%CI 1.27-3.20, p = 0.002). Similarly, in patients treated with adalimumab and then infliximab, immunogenicity to adalimumab was associated with subsequent immunogenicity to infliximab (OR 2.63, 95%CI 1.46-4.80, p &lt; 0.001). For each 10-fold increase in anti-infliximab and anti-adalimumab antibody concentration, the odds of subsequently developing antibodies to adalimumab and infliximab increased by 1.73 (95% CI 1.38-2.17, p &lt; 0.001) and 1.99 (95%CI 1.34-2.99, p &lt; 0.001), respectively. Patients who developed immunogenicity with undetectable drug levels to infliximab were more likely to develop immunogenicity with undetectable drug levels to adalimumab (OR 2.37, 95% CI 1.39-4.19, p &lt; 0.001). Commencing an immunomodulator at the time of switching to the second anti-TNF was associated with improved drug persistence in patients with immunogenic, but not pharmacodynamic failure.CONCLUSION: Irrespective of drug sequence, immunogenicity to the first anti-TNF agent was associated with immunogenicity to the second, which was mitigated by the introduction of an immunomodulator in patients with immunogenic, but not pharmacodynamic treatment failure
    corecore