24,043 research outputs found

    Convergence Rates for Newton’s Method at Singular Points

    Get PDF
    If Newton’s method is employed to find a root of a map from a Banach space into itself and the derivative is singular at that root, the convergence of the Newton iterates to the root is linear rather than quadratic. In this paper we give a detailed analysis of the linear convergence rates for several types of singular problems. For some of these problems we describe modifications of Newton’s method which will restore quadratic convergence

    Loadcell supports for a dynamic force plate

    Get PDF
    An apparatus was developed to accurately measure components of force along three mutually perpendicular axes, torque, and the center of pressure imposed by the foot of a subject walking over its surface. The data obtained were used to supplement high-speed motion picture and electromyographic (EMG) data for in-depth studies of normal or abnormal human gait. Significant features of the design (in particular, the mechanisms used to support the loadcell transducers) are described. Results of the development program and typical data obtained with the device are presented and discussed

    Study of hydrogen slush-hydrogen gel utilization

    Get PDF
    Study of hydrogen slush-hydrogen gel utilization is presented in two volume publication. The first volume contains the physical and thermal property data for hydrogen used in the study. In the second volume, details of the technical effort are presented including parametric analysis of effects on vehicle systems

    Homotopy Method for the Large, Sparse, Real Nonsymmetric Eigenvalue Problem

    Get PDF
    A homotopy method to compute the eigenpairs, i.e., the eigenvectors and eigenvalues, of a given real matrix A1 is presented. From the eigenpairs of some real matrix A0, the eigenpairs of A(t) ≡ (1 − t)A0 + tA1 are followed at successive "times" from t = 0 to t = 1 using continuation. At t = 1, the eigenpairs of the desired matrix A1 are found. The following phenomena are present when following the eigenpairs of a general nonsymmetric matrix: • bifurcation, • ill conditioning due to nonorthogonal eigenvectors, • jumping of eigenpaths. These can present considerable computational difficulties. Since each eigenpair can be followed independently, this algorithm is ideal for concurrent computers. The homotopy method has the potential to compete with other algorithms for computing a few eigenvalues of large, sparse matrices. It may be a useful tool for determining the stability of a solution of a PDE. Some numerical results will be presented

    Overcommitment in Cloud Services -- Bin packing with Chance Constraints

    Full text link
    This paper considers a traditional problem of resource allocation, scheduling jobs on machines. One such recent application is cloud computing, where jobs arrive in an online fashion with capacity requirements and need to be immediately scheduled on physical machines in data centers. It is often observed that the requested capacities are not fully utilized, hence offering an opportunity to employ an overcommitment policy, i.e., selling resources beyond capacity. Setting the right overcommitment level can induce a significant cost reduction for the cloud provider, while only inducing a very low risk of violating capacity constraints. We introduce and study a model that quantifies the value of overcommitment by modeling the problem as a bin packing with chance constraints. We then propose an alternative formulation that transforms each chance constraint into a submodular function. We show that our model captures the risk pooling effect and can guide scheduling and overcommitment decisions. We also develop a family of online algorithms that are intuitive, easy to implement and provide a constant factor guarantee from optimal. Finally, we calibrate our model using realistic workload data, and test our approach in a practical setting. Our analysis and experiments illustrate the benefit of overcommitment in cloud services, and suggest a cost reduction of 1.5% to 17% depending on the provider's risk tolerance

    A review of above ground necromass in tropical forests

    Get PDF

    Molecular-beam epitaxy of (Zn,Mn)Se on Si(100)

    Full text link
    We have investigated the growth by molecular-beam epitaxy of the II-VI diluted magnetic semiconductor (Zn,Mn)Se on As-passivated Si(100) substrates. The growth start has been optimized by using low-temperature epitaxy. Surface properties were assessed by Nomarski and scanning electron microscopy. Optical properties of (Zn,Mn)Se have been studied by photoluminescence and a giant Zeeman splitting of up to 30 meV has been observed. Our observations indicate a high crystalline quality of the epitaxial films.Comment: To be published in Applied Physics Letter

    Thermal performance of multilayer insulations Interim report

    Get PDF
    Heat flux and optical property measurement for multilayer insulatio

    The effects of reinforcement interval on the acquisition of paired-associate responses

    Get PDF
    Effects of reinforcement interval on acquisition of paired-associate response

    Thermal performance of multilayer insulations Final report

    Get PDF
    Composite multilayer insulation system of double goldized, Nylar radiation shield
    • …
    corecore