3,525 research outputs found

    Cenozoic paleoceanography 1986: An introduction

    Get PDF
    New developments in Cenozoic paleoceanography include the application of climate models and atmospheric general circulation models to questions of climate reconstruction, the refinement of conceptual models for interpretation of the carbon isotope record in terms of carbon mass balance, paleocirculation, paleoproductivity, and the regional mapping of paleoceanographic events by acoustic stratigraphy. Sea level change emerges as a master variable to which changes in the ocean environment must be traced in many cases, and tests of the onlap-offlap paradigm therefore are of crucial importance

    Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration.

    Get PDF
    Satellite cells are skeletal muscle stem cells capable of self-renewal and differentiation after transplantation, but whether they contribute to endogenous muscle fiber repair has been unclear. The transcription factor Pax7 marks satellite cells and is critical for establishing the adult satellite cell pool. By using a lineage tracing approach, we show that after injury, quiescent adult Pax7(+) cells enter the cell cycle; a subpopulation returns to quiescence to replenish the satellite cell compartment, while others contribute to muscle fiber formation. We demonstrate that Sprouty1 (Spry1), a receptor tyrosine kinase signaling inhibitor, is expressed in quiescent Pax7(+) satellite cells in uninjured muscle, downregulated in proliferating myogenic cells after injury, and reinduced as Pax7(+) cells re-enter quiescence. We show that Spry1 is required for the return to quiescence and homeostasis of the satellite cell pool during repair. Our results therefore define a role for Spry1 in adult muscle stem cell biology and tissue repair

    Local manifestations of cometary activity

    Get PDF
    Comets are made of volatile and refractory material and naturally experience various degrees of sublimation as they orbit around the Sun. This gas release, accompanied by dust, represents what is traditionally described as activity. Although the basic principles are well established, most details remain elusive, especially regarding the mechanisms by which dust is detached from the surface and subsequently accelerated by the gas flows surrounding the nucleus. During its 2 years rendez-vous with comet 67P/Churyumov-Gerasimenko, ESA's Rosetta has observed cometary activity with unprecedented details, in both the inbound and outbound legs of the comet's orbit. This trove of data provides a solid ground on which new models of activity can be built. In this chapter, we review how activity manifests at close distance from the surface, establish a nomenclature for the different types of observed features, discuss how activity is at the same time transforming and being shaped by the topography, and finally address several potential mechanisms.Comment: This paper is a review chapter in the upcoming book "Comets: Post 67P Perspectives" edited by ISSI and Space Science Reviews. Accepted on 08 April 201

    Network-timing-dependent plasticity

    Get PDF
    Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD), with STDP-induced long-term potentiation (LTP) and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding

    A hitchhikers guide to the Galápagos: co-phylogeography of Galápagos mockingbirds and their parasites

    Get PDF
    Background: Parasites are evolutionary hitchhikers whose phylogenies often track the evolutionary history of their hosts. Incongruence in the evolutionary history of closely associated lineages can be explained through a variety of possible events including host switching and host independent speciation. However, in recently diverged lineages stochastic population processes, such as retention of ancestral polymorphism or secondary contact, can also explain discordant genealogies, even in fully co-speciating taxa. The relatively simple biogeographic arrangement of the Galapagos archipelago, compared with mainland biomes, provides a framework to identify stochastic and evolutionary informative components of genealogic data in these recently diverged organisms. Results: Mitochondrial DNA sequences were obtained for four species of Galapagos mockingbirds and three sympatric species of ectoparasites - two louse and one mite species. These data were complemented with nuclear EF1 alpha sequences in selected samples of parasites and with information from microsatellite loci in the mockingbirds. Mitochondrial sequence data revealed differences in population genetic diversity between all taxa and varying degrees of topological congruence between host and parasite lineages. A very low level of genetic variability and lack of congruence was found in one of the louse parasites, which was excluded from subsequent joint analysis of mitochondrial data. The reconciled multi-species tree obtained from the analysis is congruent with both the nuclear data and the geological history of the islands. Conclusions: The gene genealogies of Galapagos mockingbirds and two of their ectoparasites show strong phylogeographic correlations, with instances of incongruence mostly explained by ancestral genetic polymorphism. A third parasite genealogy shows low levels of genetic diversity and little evidence of co-phylogeny with their hosts. These differences can mostly be explained by variation in life-history characteristics, primarily host specificity and dispersal capabilities. We show that pooling genetic data from organisms living in close ecological association reveals a more accurate phylogeographic history for these taxa. Our results have implications for the conservation and taxonomy of Galapagos mockingbirds and their parasites

    Banner News

    Get PDF
    https://openspace.dmacc.edu/banner_news/1284/thumbnail.jp

    Polar Microalgae: New Approaches towards Understanding Adaptations to an Extreme and Changing Environment

    Get PDF
    Polar Regions are unique and highly prolific ecosystems characterized by extreme environmental gradients. Photosynthetic autotrophs, the base of the food web, have had to adapt physiological mechanisms to maintain growth, reproduction and metabolic activity despite environmental conditions that would shut-down cellular processes in most organisms. High latitudes are characterized by temperatures below the freezing point, complete darkness in winter and continuous light and high UV in the summer. Additionally, sea-ice, an ecological niche exploited by microbes during the long winter seasons when the ocean and land freezes over, is characterized by large salinity fluctuations, limited gas exchange, and highly oxic conditions. The last decade has been an exciting period of insights into the molecular mechanisms behind adaptation of microalgae to the cryosphere facilitated by the advancement of new scientific tools, particularly “omics” techniques. We review recent insights derived from genomics, transcriptomics, and proteomics studies. Genes, proteins and pathways identified from these highly adaptable polar microbes have far-reaching biotechnological applications. Furthermore, they may provide insights into life outside this planet, as well as glimpses into the past. High latitude regions also have disproportionately large inputs into global biogeochemical cycles and are the region most sensitive to climate change

    Stone composition independently predicts stone size in 18,029 spontaneously passed stones

    Full text link
    PURPOSE To evaluate whether the size of spontaneously passed stones (SPS) may be associated with clinical parameters. METHODS A search for SPS was conducted in our electronic stone database, comprising data on stones analyzed over the last 33 years at our institution. Adults with upper urinary tract stones were included. Cases with stenotic urinary tract disease or past history of anastomotic urinary tract surgery were excluded. Stone size expressed as maximal stone diameter (MSD) and stone volume (SV) was compared between groups by one-way ANOVA. Logistic regression analyses were performed to identify predictors of MSD ≥ 6 mm. RESULTS Overall mean MSD and SV for 18,029 SPS was 4.1 mm and 11.5 mm3^{3}, respectively, and significantly differed between stone composition groups (p < 0.001). The lowest mean MSD and SV were found for calcium oxalate monohydrate (3.6 mm and 9.0 mm3^{3}, respectively) and the highest mean MSD and SV were found for struvite (7.9 mm and 61.0 mm3^{3}, respectively). Stone composition and increasing age were found to be independent predictors of MSD ≥ 6 mm (both p < 0.001). Sex differentiation did not contribute as a predictor of MSD ≥ 6 mm. CONCLUSIONS Stone composition and-to a lesser extent-age serve as independent predictors of size of spontaneously passed stones. Of particular importance, large spontaneously passed stones of ≥ 6 mm may be frequently found in cystine, brushite or struvite stone formers, whereas a minority of all calcium oxalate stones exceed that cutoff. Future studies shall evaluate these parameters as possible predictors of spontaneous stone passage
    corecore