6 research outputs found

    Sentinel-2 remote sensing of Zostera noltei-dominated intertidal seagrass meadows

    Get PDF
    Accurate habitat mapping methods are urgently required for the monitoring, conservation, and management of blue carbon ecosystems and their associated services. This study focuses on exposed intertidal seagrass meadows, which play a major role in the functioning of nearshore ecosystems. Using Sentinel-2 (S2) data, we demonstrate that satellite remote sensing can be used to map seagrass percent cover (SPC) and leaf biomass (SB), and to characterize its seasonal dynamics. In situ radiometric and biological data were acquired from three intertidal meadows of Zostera noltei along the European Atlantic coast in the summers of 2018 and 2019. This information allowed algorithms to estimate SPC and SB from a vegetation index to be developed and assessed. Importantly, a single SPC algorithm could consistently be used to study Z. noltei-dominated meadows at several sites along the European Atlantic coast. To analyze the seagrass seasonal cycle and to select images corresponding to its maximal development, a two-year S2 dataset was acquired for a French study site in Bourgneuf Bay. The po-tential of S2 to characterize the Z. noltei seasonal cycle was demonstrated for exposed intertidal meadows. The SPC map that best represented seagrass growth annual maximum was validated using in situ measurements, resulting in a root mean square difference of 14%. The SPC and SB maps displayed a patchy distribution, influenced by emersion time, mudflat topology, and seagrass growth pattern. The ability of S2 to measure the surface area of different classes of seagrass cover was investigated, and surface metrics based on seagrass areas with SPC >= 50% and SPC >= 80% were computed to estimate the interannual variation in the areal extent of the meadow. Due to the high spatial resolution (pixel size of 10 m), frequent revisit time (<= 5 days), and long-term objective of the S2 mission, S2-derived seagrass time-series are expected to contribute to current coastal ecosystem management, such as the European Water Framework Directive, but to also guide future adaptation plans to face global change in coastal areas. Finally, recommendations for future intertidal seagrass studies are proposed

    Satellite-assisted monitoring of water quality to support the implementation of the Water Framework Directive

    Get PDF
    The EU Water Framework Directive1 (WFD) is an ambitious legislation framework to achieve good ecological and chemical status for all surface waters and good quantitative and chemical status for groundwater by 2027. A total of 111,062 surface waterbodies are presently reported on under the Directive, 46% of which are actively monitored for ecological status. Of these waterbodies 80% are rivers, 16% are lakes, and 4% are coastal and transitional waters. In the last assessment, 4% (4,442) of waterbodies still had unknown ecological status, while in 23% monitoring did not include in situ water sampling to support ecological status assessment2. For individual (mainly biological) assessment criteria the proportion of waterbodies without observation data is much larger; the full scope of monitoring under the WFD is therefore still far from being realised. At the same time, 60% of surface waters did not achieve ‘good’ status in the second river basin management plan and waterbodies in Europe are considered to be at high risk of having poor water quality based on combined microbial, physical and physicochemical indicators3

    Validation of Sentinel-2 (MSI) and Sentinel-3 (OLCI) water quality products in turbid estuaries using fixed monitoring stations

    Get PDF
    It is common in estuarine waters to place fixed monitoring stations, with the advantages of easy maintenance and continuous measurements. These two features make fixed monitoring stations indispensable for understanding the optical complexity of estuarine waters and enable an improved quantification of uncertainties in satellite-derived water quality variables. However, comparing the point-scale measurements of stationary monitoring systems to time-snapshots of satellite pixels suffers from additional uncertainties related to temporal/spatial discrepancies. This research presents a method for validating satellite-derived water quality variables with the continuous measurements of a fixed monitoring station in the Ems Dollard estuary on the Dutch-German borders. The method has two steps; first, similar in-situ measurements are grouped. Second, satellite observations are upscaled to match these point measurements in time and spatial scales. The upscaling approach was based on harmonizing the probability distribution functions of satellite observations and in-situ measurements using the first and second moments. The fixed station provided a continuous record of data on suspended particulate matter (SPM) and chlorophyll-a (Chl-a) concentrations at 1 min intervals for 1 year (2016–2017). Satellite observations were provided by Sentinel-2 (MultiSpectral Instrument, S2-MSI) and Sentinel-3 (Ocean and Land Color Instrument, S3-OLCI) sensors for the same location and time of in-situ measurements. Compared to traditional validation procedures, the proposed method has improved the overall fit and produced valuable information on the ranges of goodness-of-fit measures (slope, intercept, correlation coefficient, and normalized root-mean-square deviation). The correlation coefficient between measured and derived SPM concentrations has improved from 0.16 to 0.52 for S2-MSI and 0.14 to 0.84 for S3-OLCI. For the Chl-a matchup, the improvement was from 0.26 to 0.82 and from 0.14 to 0.63 for S2-MSI and S3-OLCI, respectively. The uncertainty in the derived SPM and Chl-a concentrations was reduced by 30 and 23% for S2-SMI and by 28 and 16% for S3-OLCI. The high correlation and reduced uncertainty signify that the matchup pairs are observing the same fluctuations in the measured variable. These new goodness-of-fit measures correspond to the results of the performed sensitivity analysis, previous literature, and reflect the inherent accuracy of the applied derivation model

    An excitable Rho GTPase signaling network generates dynamic subcellular contraction patterns

    No full text
    Rho GTPase-based signaling networks control cellular dynamics by coordinating protrusions and retractions in space and time. Here, we reveal a signaling network that generates pulses and propagating waves of cell contractions. These dynamic patterns emerge via self organization from an activator-inhibitor network, in which the small GTPase Rho amplifies its activity by recruiting its activator, GEF-H1. Rho also inhibits itself by local recruitment of acto myosin and the associated RhoGAP Myo9b. This network structure enables spontaneous, self limiting patterns of subcellular contractility that can explore mechanical cues in the extracellular environment. Indeed, acto-myosin pulse frequency in cells is altered by matrix elasticity, showing that coupling of contractility pulses to environmental deformations modulates network dynamics. Thus, our study reveals a mechanism that integrates intracellular biochemical and extracellular mechanical signals into subcellular activity patterns to control cellular contractility dynamics
    corecore