213 research outputs found

    Extended surfaces modulate and can catalyze hydrophobic effects

    Full text link
    Interfaces are a most common motif in complex systems. To understand how the presence of interfaces affect hydrophobic phenomena, we use molecular simulations and theory to study hydration of solutes at interfaces. The solutes range in size from sub-nanometer to a few nanometers. The interfaces are self-assembled monolayers with a range of chemistries, from hydrophilic to hydrophobic. We show that the driving force for assembly in the vicinity of a hydrophobic surface is weaker than that in bulk water, and decreases with increasing temperature, in contrast to that in the bulk. We explain these distinct features in terms of an interplay between interfacial fluctuations and excluded volume effects---the physics encoded in Lum-Chandler-Weeks theory [J. Phys. Chem. B 103, 4570--4577 (1999)]. Our results suggest a catalytic role for hydrophobic interfaces in the unfolding of proteins, for example, in the interior of chaperonins and in amyloid formation.Comment: 22 pages, 5 figure

    Nanowired three-dimensional cardiac patches

    Get PDF
    Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds1, 2, 3. These biomaterials, which are usually made of either biological polymers such as alginate4 or synthetic polymers such as poly(lactic acid) (PLA)5, help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit6. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.National Institutes of Health (U.S.) (NIH, grant GM073626)National Institutes of Health (U.S.) (NIH, grant DE13023)National Institutes of Health (U.S.) (NIH, grant DE016516)American Heart Association (Postdoctoral Fellowship)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award (no. F32GM096546)

    Triggered optical coherence tomography for capturing rapid periodic motion

    Get PDF
    Quantitative cross-sectional imaging of vocal folds during phonation is potentially useful for diagnosis and treatments of laryngeal disorders. Optical coherence tomography (OCT) is a powerful technique, but its relatively low frame rates makes it challenging to visualize rapidly vibrating tissues. Here, we demonstrate a novel method based on triggered laser scanning to capture 4-dimensional (4D) images of samples in motu at audio frequencies over 100 Hz. As proof-of-concept experiments, we applied this technique to imaging the oscillations of biopolymer gels on acoustic vibrators and aerodynamically driven vibrations of the vocal fold in an ex vivo calf larynx model. Our results suggest that triggered 4D OCT may be useful in understanding and assessing the function of vocal folds and developing novel treatments in research and clinical settings

    PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation

    Full text link
    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched-polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on gPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pHs, at elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultra-long blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery

    Inhibition of Cancer Cell Migration by Multiwalled Carbon Nanotubes

    Get PDF
    Inhibiting cancer cell migration and infiltration to other tissues makes the difference between life and death. Multiwalled carbon nanotubes (MWCNTs) display intrinsic biomimetic properties with microtubules, severely interfering with the function of these protein filaments during cell proliferation, triggering cell death. Here it is shown MWCNTs disrupt the centrosomal microtubule cytoskeletal organization triggering potent antimigratory effects in different cancer cells

    A two-component pre-seeded dermal-epidermal scaffold

    Get PDF
    We have developed a bilayered dermal-epidermal scaffold for application in the treatment of full-thickness skin defects. The dermal component gels in situ and adapts to the lesion shape, delivering human dermal fibroblasts in a matrix of fibrin and cross-linked hyaluronic acid modified with a cell adhesion-promoting peptide. Fibroblasts were able to form a tridimensional matrix due to material features such as tailored mechanical properties, presence of protease-degradable elements and cell-binding ligands. The epidermal component is a robust membrane containing cross-linked hyaluronic acid and poly-l-lysine, on which keratinocytes were able to attach and to form a monolayer. Amine-aldehyde bonding at the interface between the two components allows the formation of a tightly bound composite scaffold. Both parts of the scaffold were designed to provide cell-type-specific cues to allow for cell proliferation and form a construct that mimics the skin environment.D.S.K. acknowledges funding from the Biotechnology Research Endowment from the Department of Anesthesiology at Boston Children's Hospital. I.P.M. acknowledges the Portuguese Foundation for Science and Technology for the grant BD/39396/2007 and the MIT-Portugal Program. D.G. acknowledges the Swiss National Science Foundation for a post-doctoral fellowship (PBGEP3-129111). B.P.T. acknowledges an NIR Ruth L. Kirschstein National Research Service Award (F32GM096546)

    Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immobilization of biologically active proteins on nanosized surfaces is a key process in bionanofabrication. Carbon nanotubes with their high surface areas, as well as useful electronic, thermal and mechanical properties, constitute important building blocks in the fabrication of novel functional materials.</p> <p>Results</p> <p>Lipases from <it>Candida rugosa </it>(CRL) were found to be adsorbed on the multiwalled carbon nanotubes with very high retention of their biological activity (97%). The immobilized biocatalyst showed 2.2- and 14-fold increases in the initial rates of transesterification activity in nearly anhydrous hexane and water immiscible ionic liquid [Bmim] [PF6] respectively, as compared to the lyophilized powdered enzyme. It is presumed that the interaction with the hydrophobic surface of the nanotubes resulted in conformational changes leading to the 'open lid' structure of CRL. The immobilized enzyme was found to give 64% conversion over 24 h (as opposed to 14% with free enzyme) in the formation of butylbutyrate in nearly anhydrous hexane. Similarly, with ionic liquid [Bmim] [PF6], the immobilized enzyme allowed 71% conversion as compared to 16% with the free enzyme. The immobilized lipase also showed high enantioselectivity as determined by kinetic resolution of (±) 1-phenylethanol in [Bmim] [PF6]. While free CRL gave only 5% conversion after 36 h, the immobilized enzyme resulted in 37% conversion with > 99% enantiomeric excess. TEM studies on the immobilized biocatalyst showed that the enzyme is attached to the multiwalled nanotubes.</p> <p>Conclusion</p> <p>Successful immobilization of enzymes on nanosized carriers could pave the way for reduced reactor volumes required for biotransformations, as well as having a use in the construction of miniaturized biosensensor devices.</p

    Delivery of therapeutics using carbon nanomaterials

    No full text
    Carbon nanomaterials have found niche applications in biomedicine and drug delivery because of their unique combinations of properties, including high surface area per unit mass for high drug payloads, relative ease of surface functionalization for different biological applications, strong magnetic resonance signals that allows their use as imaging agents, and the ability to transduce light energy into heat for remotely triggered interventions. This book chapter reviews the use of carbon nanomaterials for the delivery of therapeutics such as small-molecule drugs, proteins, radionuclides, photosensitizers, and oligonucleotides, as therapeutic and theranostic agents, and for in vitro manipulation of stem cells for cell transplantation therapy. Key works that demonstrate proof-of-principle of the capabilities and strengths of carbon nanomaterials for therapeutic applications are highlighted

    The protein–nanomaterial interface

    No full text
    Developments in the past few years have illustrated the potentially revolutionizing impact of nanomaterials, especially in biomedical imaging, drug delivery, biosensing and the design of functional nanocomposites. Methods to effectively interface proteins with nanomaterials for realizing these applications continue to evolve. Proteins are being used to control both the synthesis and assembly of nanomaterials. There has also been an increasing interest in understanding the influence of nanomaterials on the structure and function of proteins. Understanding and controlling the protein–nanomaterial interface will be crucial for designing functional protein–nanomaterial conjugates and assemblies

    Directed assembly of carbon nanotubes at liquid-liquid interfaces: nanoscale conveyors for interfacial biocatalysis

    No full text
    We report that single-walled carbon nanotubes (SWNTs) can be directed to aqueous−organic interfaces with the aid of surfactants. This phenomenon can also be used to transport enzymes to the interface to effect biphasic biotransformations. Consequently, SWNT−enzyme conjugates enhance the rate of catalysis by up to 3 orders of magnitude relative to the rates obtained with native enzymes in similar biphasic systems. Furthermore, we demonstrate that this concept can be extended to other nanomaterials and other enzymes, thereby providing a general strategy for efficient interfacial biocatalysis. The ability to direct the assembly of nanotubes at the interface also provides an attractive route to organizing these nanomaterials into 2D architectures
    • …
    corecore