31 research outputs found

    Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae).

    Get PDF
    BACKGROUND: Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown. RESULTS: Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups. CONCLUSIONS: Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups supports a previously proposed headwater origin hypothesis for aquatic insects

    Tephrostratigraphy and provenance from IODP Expedition 352, Izu-Bonin arc: tracing tephra sources and volumes from the Oligocene to the Recent

    Get PDF
    Provenance studies of widely distributed tephras, integrated within a well-defined temporal framework, are important to deduce systematic changes in the source, scale, distribution and changes in regional explosive volcanism. Here, we establish a robust tephro-chronostratigraphy for a total of 157 marine tephra layers collected during IODP Expedition 352. We infer at least three major phases of highly explosive volcanism during Oligocene to Pleistocene time. Provenance analysis based on glass composition assigns 56 of the tephras to a Japan source, including correlations with 12 major and widespread tephra layers resulting from individual eruptions in Kyushu, Central Japan and North Japan between 115 ka and 3.5 Ma. The remaining 101 tephras are assigned to four source regions along the Izu-Bonin arc. One, of exclusively Oligocene age, is proximal to the Bonin Ridge islands; two reflect eruptions within the volcanic front and back-arc of the central Izu-Bonin arc, and a fourth region corresponds to the Northern Izu-Bonin arc source. First-order volume estimates imply eruptive magnitudes ranging from 6.3 to 7.6 for Japan-related eruptions and between 5.5 and 6.5 for IBM eruptions. Our results suggest tephras between 30 and 22 Ma that show a subtly different Izu-Bonin chemical signature compared to the recent arc. After a ∼11 m.y. gap in eruption, tephra supply from the Izu-Bonin arc predominates from 15 to 5 Ma, and finally a subequal mixture of tephra sources from the (palaeo)Honshu and Izu-Bonin arcs occurs within the last ∼5 Ma

    Data for: Reconstruction of oceanic circulation patterns in the tropical Pacific across the early/middle Miocene boundary as inferred from radiolarian assemblages

    No full text
    Supplementary Information A: Radiolarian occurrences across the early/middle Miocene boundary at IODP Site U1335. Supplementary Information B: Magnetic and biostratigraphic events used to construct the age-depth plots at Site U1335 (Pälike et al., 2010). Abbreviations: F, planktonic foraminifera; N, calcareous nannofossils; FO, first occurrence; LO, last occurrence. Supplementary Information C: Age-depth model at Site U1335. Supplementary Information D: Radiolarian species list at Site U1335. Supplementary Information E; Selected microphotos at Site U1335

    Radiolarian chronology and fauna across the middle/late Eocene boundary at ODP Hole 171-1052A

    No full text
    Quantitative radiolarian assemblage analysis has been conducted on middle and upper Eocene sediments (Zones RP16 to RP18) from Ocean Drilling Program Site 1052 in order to establish the radiolarian magnetobiochronology and determine the nature of the faunal turnover across the middle/late Eocene boundary in the western North Atlantic Ocean. We recognize and calibrate forty-five radiolarian bioevents to the magneto- and cyclo-stratigraphy from Site 1052 to enhance the biochronologic resolution for the middle and late Eocene. Our data is compared to sites in the equatorial Pacific (Leg 199) to access the diachrony of biostratigraphic events. Eleven bioevents are good biostratigraphic markers for tropical/subtropical locations (south of 30°N). The primary markers (lowest occurrences of Cryptocarpium azyx and Calocyclas bandyca) which are tropical zonal boundary markers for Zones RP17 and RP18 provide robust biohorizons for correlation and age determination from the low to middle latitudes and between the Atlantic and Pacific Oceans. Some other radiolarian bioevents are highly diachronous (<1 million years) between oceanic basins. A significant faunal turnover of radiolarians is recognized within Chron C17n.3n (37.7 Ma) where 13 radiolarian species disappear rapidly in less than 100 kyr and 4 new species originate. The radiolarian faunal turnover coincides with a major extinction in planktonic foraminifera. We name the turnover phase, the Middle/Late Eocene Turnover (MLET). Assemblage analysis reveals the MLET to be associated with a decrease in low-mid latitude taxa and increase in cosmopolitan taxa and radiolarian accumulation rates. The MLET might be related to increased biological productivity rather than to surface-water cooling

    Neogene radiolarian biostratigraphy and faunal evolution rates in the eastern equatorial Pacific ODP Sites 845 and 1241

    No full text
    Radiolarians from Sites 845 and 1241 in the eastern equatorial Pacific were examined in order to evaluate the role of paleoceanographic perturbations upon the general faunal evolutionary pattern of tropical planktonic organisms during the last 17 Ma. Radiolarian appearance and extinction rates indicate no periods of mass extinctions during the past 17 Ma. However, a relatively rapid replacement of the species in the radiolarian assemblages occurs near the middle–late Miocene boundary. This replacement event represents the gradual extinction of a number of radiolarian species and their gradual replacement by evolving new species. The modern equatorial circulation system was formed near the middle–late Miocene boundary due to the closure of the Indonesian seaway. The minor faunal turnover appears to be associated with the formation of the modern equatorial circulation system near the middle–late Miocene boundary. Diatom assemblages in the equatorial Pacific became more provincial in character after about 9 Ma. The appearance and extinction rates of planktic foraminifers were relatively high near the middle–late Miocene boundary, and those of calcareous nannoplankton reached high values in the early late Miocene in the equatorial Pacific Ocean. Thus, faunal evolution from the middle Miocene type to late Miocene types occurred first, being followed by floral evolution. The middle–late Miocene boundary is not a sharp boundary for planktonic microfossils, but marks a time of transition critical for faunal and floral evolution in both siliceous and calcareous microfossil assemblages in the equatorial Pacific Ocean

    Neogene radiolarian biostratigraphy and faunal evolution rates in the easternequatorial Pacific ODP Sites 845 and 1241

    No full text
    Radiolarians from Sites 845 and 1241 in the eastern equatorial Pacific were examined in order to evaluate the role of paleoceanographic perturbations upon the general faunal evolutionary pattern of tropical planktonic organisms during the last 17 Ma. Radiolarian appearance and extinction rates indicate no periods of mass extinctions during the past 17 Ma. However, a relatively rapid replacement of the species in the radiolarian assemblages occurs near the middle–late Miocene boundary. This replacement event represents the gradual extinction of a number of radiolarian species and their gradual replacement by evolving new species. The modern equatorial circulation system was formed near the middle–late Miocene boundary due to the closure of the Indonesian seaway. The minor faunal turnover appears to be associated with the formation of the modern equatorial circulation system near the middle–late Miocene boundary. Diatom assemblages in the equatorial Pacific became more provincial in character after about 9 Ma. The appearance and extinction rates of planktic foraminifers were relatively high near the middle–late Miocene boundary, and those of calcareous nannoplankton reached high values in the early late Miocene in the equatorial Pacific Ocean. Thus, faunal evolution from the middle Miocene type to late Miocene types occurred first, being followed by floral evolution. The middle–late Miocene boundary is not a sharp boundary for planktonic microfossils, but marks a time of transition critical for faunal and floral evolution in both siliceous and calcareous microfossil assemblages in the equatorial Pacific Ocean

    Successive extinctions of muricate planktonic foraminifera (Morozovelloides and Acarinina) as a candidate for marking the base Priabonian

    No full text
    The formal placement of the Global Stratotype Section 25 and Point (GSSP) for the base of the Priabonian (Upper Eocene) is currently under discussion. We suggest that two closely spaced extinctions of planktonic foraminifera at ~38 Ma offer excellent potential for long-distance correlation in marine strata and is the most suitable level to place the GSSP. The double extinction, which occurred within 11 kyr, involved the loss of the distinctive ‘muricate’ taxa Morozovelloides and the large acarininids. We present detailed biostratigraphic analyses from the Adriatic Sea and re-evaluate the magnetobiochronology of the extinction of these muricate taxa from previous studies from Ocean Drilling Program Site 1052 (western North Atlantic) and the Alano di Piave Section (NE Italy). We show these bioevents are robust, synchronous across the Atlantic Ocean and among the best calibrated and most easily recognised foraminiferal biohorizons for the entire Cenozoic. The two separate but very closely spaced bioevents provide a means for testing for completeness in the proposed stratotype and other sections that contain these fossils. The muricate extinctions coincide with a large turnover in radiolarians, within the short Subchron C17n.3n, providing distinct correlation horizons in siliceous and terrestrial sediments. We propose that the lithological level at 57.62 m in the Alano Section associated with the HO of Morozovelloides crassatus define the base of the Priabonian and the Middle/Upper Eocene boundary
    corecore