29 research outputs found
Molecular Machines in the Synapse: Overlapping Protein Sets Control Distinct Steps in Neurosecretion
Activity regulated neurotransmission shapes the computational properties of a neuron and involves the concerted action of many proteins. Classical, intuitive working models often assign specific proteins to specific steps in such complex cellular processes, whereas modern systems theories emphasize more integrated functions of proteins. To test how often synaptic proteins participate in multiple steps in neurotransmission we present a novel probabilistic method to analyze complex functional data from genetic perturbation studies on neuronal secretion. Our method uses a mixture of probabilistic principal component analyzers to cluster genetic perturbations on two distinct steps in synaptic secretion, vesicle priming and fusion, and accounts for the poor standardization between different studies. Clustering data from 121 perturbations revealed that different perturbations of a given protein are often assigned to different steps in the release process. Furthermore, vesicle priming and fusion are inversely correlated for most of those perturbations where a specific protein domain was mutated to create a gain-of-function variant. Finally, two different modes of vesicle release, spontaneous and action potential evoked release, were affected similarly by most perturbations. This data suggests that the presynaptic protein network has evolved as a highly integrated supramolecular machine, which is responsible for both spontaneous and activity induced release, with a group of core proteins using different domains to act on multiple steps in the release process
Morphological docking of secretory vesicles
Calcium-dependent secretion of neurotransmitters and hormones is essential for brain function and neuroendocrine-signaling. Prior to exocytosis, neurotransmitter-containing vesicles dock to the target membrane. In electron micrographs of neurons and neuroendocrine cells, like chromaffin cells many synaptic vesicles (SVs) and large dense-core vesicles (LDCVs) are docked. For many years the molecular identity of the morphologically docked state was unknown. Recently, we resolved the minimal docking machinery in adrenal medullary chromaffin cells using embryonic mouse model systems together with electron-microscopic analyses and also found that docking is controlled by the sub-membrane filamentous (F-)actin. Currently it is unclear if the same docking machinery operates in synapses. Here, I will review our docking assay that led to the identification of the LDCV docking machinery in chromaffin cells and also discuss whether identical docking proteins are required for SV docking in synapses
Modulation of cell proliferation, survival and gene expression by RAGE and TLR signaling in cells of the innate and adaptive immune response: role of p38 MAPK and NF-KB
Objective: The aim of this study was to evaluate a possible synergism between AGE-RAGE and TLR4 signaling and the role of p38 MAPK and NF-kB signaling pathways on the modulation of the expression of inflammatory cytokines and proliferation of cells from the innate and adaptive immune response. Material and Methods: T lymphocyte (JM) and monocyte (U937) cell lines were stimulated with LPS and AGE-BSA independently and associated, both in the presence and absence of p38 MAPK and NF-kB inhibitors. Proliferation was assessed by direct counting and viability was assessed by a biochemical assay of mitochondrial function. Cytokine gene expression for RAGe, CCL3, CCR5, IL-6 and TNF-α was studied by RT-PCR and RT-qPCR. Results: RAGE mRNA expression was detected in both cell lines. LPS and AGE-BSA did not influence cell proliferation and viability of either cell line up to 72 hours. LPS and LPS associated with AGE induced expression of IL-6 and TNF-α in monocytes and T cells, respectively. Conclusions: There is no synergistic effect between RAGE and TLR signaling on the expression of IL-6, TNF-α , RAGE, CCR5 and CCL3 by monocytes and lymphocytes. Activation of RAGE associated or not with TLR signaling also had no effect on cell proliferation and survival of these cell types
Secreted amyloid-β precursor protein functions as a GABABR1a ligand to modulate synaptic transmission
Amyloid-β precursor protein (APP) is central to the pathogenesis of Alzheimer's disease, yet its physiological function remains unresolved. Accumulating evidence suggests that APP has a synaptic function mediated by an unidentified receptor for secreted APP (sAPP). Here we show that the sAPP extension domain directly bound the sushi 1 domain specific to the γ-aminobutyric acid type B receptor subunit 1a (GABABR1a). sAPP-GABABR1a binding suppressed synaptic transmission and enhanced short-term facilitation in mouse hippocampal synapses via inhibition of synaptic vesicle release. A 17-amino acid peptide corresponding to the GABABR1a binding region within APP suppressed in vivo spontaneous neuronal activity in the hippocampus of anesthetized Thy1-GCaMP6s mice. Our findings identify GABABR1a as a synaptic receptor for sAPP and reveal a physiological role for sAPP in regulating GABABR1a function to modulate synaptic transmission
Synapse type-specific proteomic dissection identifies IgSF8 as a hippocampal CA3 microcircuit organizer
Excitatory and inhibitory neurons are connected into microcircuits that generate circuit output. Central in the hippocampal CA3 microcircuit is the mossy fiber (MF) synapse, which provides powerful direct excitatory input and indirect feedforward inhibition to CA3 pyramidal neurons. Here, we dissect its cell-surface protein (CSP) composition to discover novel regulators of MF synaptic connectivity. Proteomic profiling of isolated MF synaptosomes uncovers a rich CSP composition, including many CSPs without synaptic function and several that are uncharacterized. Cell-surface interactome screening identifies IgSF8 as a neuronal receptor enriched in the MF pathway. Presynaptic Igsf8 deletion impairs MF synaptic architecture and robustly decreases the density of bouton filopodia that provide feedforward inhibition. Consequently, IgSF8 loss impairs excitation/inhibition balance and increases excitability of CA3 pyramidal neurons. Our results provide insight into the CSP landscape and interactome of a specific excitatory synapse and reveal IgSF8 as a critical regulator of CA3 microcircuit connectivity and function
Secreted amyloid-b precursor protein functions as a GABA B R1a ligand to modulate synaptic transmission
Amyloid-b precursor protein (APP) is central to the pathogenesis of Alzheimer’s disease, yet its physiological function remains unresolved. Accumulating evidence suggests that APP has a synaptic function mediated by an unidentified receptor for secreted APP (sAPP). Here we show that the sAPP extension domain directly bound the sushi 1 domain specific to the g-aminobutyric acid type B receptor subunit 1a (GABA B R1a). sAPP-GABA B R1a binding suppressed synaptic transmission and enhanced short-term facilitation in mouse hippocampal synapses via inhibition of synaptic vesicle release. A 17–amino acid peptide corresponding to the GABA B R1a binding region within APP suppressed in vivo spontaneous neuronal activity in the hippocampus of anesthetized Thy1-GCaMP6s mice. Our findings identify GABA B R1a as a synaptic receptor for sAPP and reveal a physiological role for sAPP in regulating GABA B R1a function to modulate synaptic transmission
CAPS-1 requires its C2, PH, MHD1 and DCV domains for dense core vesicle exocytosis in mammalian CNS neurons
CAPS (calcium-dependent activator protein for secretion) are multi-domain proteins involved in regulated exocytosis of synaptic vesicles (SVs) and dense core vesicles (DCVs). Here, we assessed the contribution of different CAPS-1 domains to its subcellular localization and DCV exocytosis by expressing CAPS-1 mutations in four functional domains in CAPS-1/-2 null mutant (CAPS DKO) mouse hippocampal neurons, which are severely impaired in DCV exocytosis. CAPS DKO neurons showed normal development and no defects in DCV biogenesis and their subcellular distribution. Truncation of the CAPS-1 C-terminus (CAPS Δ654-1355) impaired CAPS-1 synaptic enrichment. Mutations in the C2 (K428E or G476E) or pleckstrin homology (PH; R558D/K560E/K561E) domain did not. However, all mutants rescued DCV exocytosis in CAPS DKO neurons to only 20% of wild type CAPS-1 exocytosis capacity. To assess the relative importance of CAPS for both secretory pathways, we compared effect sizes of CAPS-1/-2 deficiency on SV and DCV exocytosis. Using the same (intense) stimulation, DCV exocytosis was impaired relatively strong (96% inhibition) compared to SV exocytosis (39%). Together, these data show that the CAPS-1 C-terminus regulates synaptic enrichment of CAPS-1. All CAPS-1 functional domains are required, and the C2 and PH domain together are not sufficient, for DCV exocytosis in mammalian CNS neurons
VPS35 depletion does not impair presynaptic structure and function
The endosomal system is proposed as a mediator of synaptic vesicle recycling, but the molecular recycling mechanism remains largely unknown. Retromer is a key protein complex which mediates endosomal recycling in eukaryotic cells, including neurons. Retromer is important for brain function and mutations in retromer genes are linked to neurodegenerative diseases. In this study, we aimed to determine the role of retromer in presynaptic structure and function. We assessed the role of retromer by knocking down VPS35, the core subunit of retromer, in primary hippocampal mouse neurons. VPS35 depletion led to retromer dysfunction, measured as a decrease in GluA1 at the plasma membrane, and bypassed morphological defects previously described in chronic retromer depletion models. We found that retromer is localized at the mammalian presynaptic terminal. However, VPS35 depletion did not alter the presynaptic ultrastructure, synaptic vesicle release or retrieval. Hence, we conclude that retromer is present in the presynaptic terminal but it is not essential for the synaptic vesicle cycle. Nonetheless, the presynaptic localization of VPS35 suggests that retromer-dependent endosome sorting could take place for other presynaptic cargo
