220 research outputs found

    DIRECTION OF ISOMETRIC BALLISTIC FORCE IS RELATED TO ANTAGONISTIC MUSCULE DISCHARGE

    Get PDF
    The purpose of this study was to investigate the relationship between electromyographic (EMG) activities of human thigh muscles (vastus medialis, vastus lateralis, rectus femoris, biceps femoris and semitendinosus) and the direction of knee extension force during ramp and ballistic contractions. Four subjects exerted isometric knee extension forces at a target force level of 40% of maximum voluntary contraction (MVC) at various speeds. Variations of EMG amplitudes of all thigh muscles during ballistic contraction were much larger than those during ramp contractions. Only biceps femoris was related to the direction of force. These results suggest that EMG activity of biceps femoris muscle is an important factor for deciding direction of isometric ballistic knee extension force

    MOTOR UNIT FIRINGS DURING VOLUNTARY ISOMETRIC RAMP AND BALLISTIC CONTRACTIONS IN HUMAN VASTUS MEDIALIS MUSCLE

    Get PDF
    Intra-muscular electromyographic (EMG) signals in vastus medialis muscle were decomposed into their constituent motor unit action potential trains using a specially designed quadrifilar wire electrode during voluntary isometric ramp and ballistic contractions. Five male adults participated in our experiments as subjects and performed ramp trapezoidal, ramp triangular, and ballistic contractions. By using a newly developed wire electrode, intra-muscular EMG signals were successfully decomposed into the individual motor unit action potential trains. The firing behaviors analyzed by the decomposition technique were consistent with previous studies on small muscles. This new quadrifilar wire electrode is potentially a useful tool for detecting intra-muscular electromyographic signals in large limb muscles such as the vastus medialis

    Computation of milestones for decision support during system restoration

    Get PDF
    System restoration involves status assessment, optimization of generation capability, and load pickup. The optimization problem needs to take complex constraints into consideration, and therefore, it is not practical to formulate the problem as one single optimization problem. The other critical consideration for the development of decision support tools is its generality, i.e., the tools should be portable from a system to another with minimal customization. This paper reports a practical methodology for construction of system restoration strategies. The strategy adopted by each power system differs, depending on system characteristics and policies. A new method based on the concept of generic restoration milestones (GRMs) is proposed. A specific restoration strategy can be synthesized by a combination of GRMs based on the actual system conditions. The decision support tool is expected to reduce the restoration time, thereby improving system reliability. The proposed decision support tool has been validated with cases based on a simplified Western Electricity Coordinating Council (WECC) 200-Bus system and Hawaiian Electric Company system. © 2011 IEEE.published_or_final_versio

    An Electron-Tracking Compton Telescope for a Survey of the Deep Universe by MeV gamma-rays

    Get PDF
    Photon imaging for MeV gammas has serious difficulties due to huge backgrounds and unclearness in images, which are originated from incompleteness in determining the physical parameters of Compton scattering in detection, e.g., lack of the directional information of the recoil electrons. The recent major mission/instrument in the MeV band, Compton Gamma Ray Observatory/COMPTEL, which was Compton Camera (CC), detected mere 30\sim30 persistent sources. It is in stark contrast with \sim2000 sources in the GeV band. Here we report the performance of an Electron-Tracking Compton Camera (ETCC), and prove that it has a good potential to break through this stagnation in MeV gamma-ray astronomy. The ETCC provides all the parameters of Compton-scattering by measuring 3-D recoil electron tracks; then the Scatter Plane Deviation (SPD) lost in CCs is recovered. The energy loss rate (dE/dx), which CCs cannot measure, is also obtained, and is found to be indeed helpful to reduce the background under conditions similar to space. Accordingly the significance in gamma detection is improved severalfold. On the other hand, SPD is essential to determine the point-spread function (PSF) quantitatively. The SPD resolution is improved close to the theoretical limit for multiple scattering of recoil electrons. With such a well-determined PSF, we demonstrate for the first time that it is possible to provide reliable sensitivity in Compton imaging without utilizing an optimization algorithm. As such, this study highlights the fundamental weak-points of CCs. In contrast we demonstrate the possibility of ETCC reaching the sensitivity below 1×10121\times10^{-12} erg cm2^{-2} s1^{-1} at 1 MeV.Comment: 19 pages, 12 figures, Accepted to the Astrophysical Journa

    CANGAROO-III Observation of TeV Gamma Rays from the vicinity of PSR B1 706-44

    Get PDF
    Observation by the CANGAROO-III stereoscopic system of the Imaging Cherenkov Telescope has detected extended emission of TeV gamma rays in the vicinity of the pulsar PSR B1706-44. The strength of the signal observed as gamma-ray-like events varies when we apply different ways of emulating background events. The reason for such uncertainties is argued in relevance to gamma-rays embedded in the "off-source data", that is, unknown sources and diffuse emission in the Galactic plane, namely, the existence of a complex structure of TeV gamma-ray emission around PSR B1706-44.Comment: 10 pages, 13 figures, to be published in Ap

    CANGAROO-III observation of TeV gamma rays from the unidentified gamma-ray source HESS J1614-518

    Get PDF
    We report the detection, with the CANGAROO-III imaging atmospheric Cherenkov telescope array, of a very high energy gamma-ray signal from the unidentified gamma-ray source HESS J1614-518, which was discovered in the H.E.S.S. Galactic plane survey. Diffuse gamma-ray emission was detected above 760 GeV at the 8.9 sigma level during an effective exposure of 54 hr from 2008 May to August. The spectrum can be represented by a power-law: 8.2+-2.2_{stat}+-2.5_{sys}x10^{-12}x (E/1TeV)^{-Gamma} cm^{-2} s^{-1} TeV^{-1} with a photon index Gamma of 2.4+-0.3_{stat}+-0.2_{sys}, which is compatible with that of the H.E.S.S. observations. By combining our result with multi-wavelength data, we discuss the possible counterparts for HESS J1614-518 and consider radiation mechanisms based on hadronic and leptonic processes for a supernova remnant, stellar winds from massive stars, and a pulsar wind nebula. Although a leptonic origin from a pulsar wind nebula driven by an unknown pulsar remains possible, hadronic-origin emission from an unknown supernova remnant is preferred.Comment: 9 pages, 7 figures, accepted for publication in Ap

    Searches for very high energy gamma rays from blazars with CANGAROO-III telescope in 2005-2009

    Full text link
    We have searched for very high energy (VHE) gamma rays from four blazars using the CANGAROO-III imaging atmospheric Cherenkov telescope. We report the results of the observations of H 2356-309, PKS 2155-304, PKS 0537-441, and 3C 279, performed from 2005 to 2009, applying a new analysis to suppress the effects of the position dependence of Cherenkov images in the field of view. No significant VHE gamma ray emission was detected from any of the four blazars. The GeV gamma-ray spectra of these objects were obtained by analyzing Fermi/LAT archival data. Non-simultaneous wide range (radio to VHE gamma-ray bands) spectral energy distributions (SEDs) including CANGAROO-III upper limits, GeV gamma-ray spectra, and archival data are discussed using a one-zone synchrotron self-Compton (SSC) model in combination with a external Compton (EC) radiation. The HBLs (H 2356-309 and PKS 2155-304) can be explained by a simple SSC model, and PKS 0537-441 and 3C 279 are well modeled by a combination of SSC and EC model. We find a consistency with the blazar sequence in terms of strength of magnetic field and component size.Comment: 11 pages, 8 figures, Accepted for publication in Astroparticle Physic

    A Bayesian assessment of an approximate model for unconfined water flow in sloping layered porous media

    Get PDF
    The prediction of water table height in unconfined layered porous media is a difficult modelling problem that typically requires numerical simulation. This paper proposes an analytical model to approximate the exact solution based on a steady-state Dupuit–Forchheimer analysis. The key contribution in relation to a similar model in the literature relies in the ability of the proposed model to consider more than two layers with different thicknesses and slopes, so that the existing model becomes a special case of the proposed model herein. In addition, a model assessment methodology based on the Bayesian inverse problem is proposed to efficiently identify the values of the physical parameters for which the proposed model is accurate when compared against a reference model given by MODFLOW-NWT, the open-source finite-difference code by the U.S. Geological Survey. Based on numerical results for a representative case study, the ratio of vertical recharge rate to hydraulic conductivity emerges as a key parameter in terms of model accuracy so that, when appropriately bounded, both the proposed model and MODFLOW-NWT provide almost identical results

    Readout technologies for directional WIMP Dark Matter detection

    Get PDF
    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies
    corecore