187 research outputs found

    The role of mucin 1 in respiratory diseases

    Get PDF
    Recent evidence has demonstrated that mucin 1 (MUC1) is involved in many pathological processes that occur in the lung. MUC1 is a transmembrane protein mainly expressed by epithelial and hematopoietic cells. It has a receptor-like structure, which can sense the external environment and activate intracellular signal transduction pathways through its cytoplasmic domain. The extracellular domain of MUC1 can be released to the external environment, thus acting as a decoy barrier to mucosal pathogens, as well as serving as a serum biomarker for the diagnosis and prognosis of several respiratory diseases such as lung cancer and interstitial lung diseases. Furthermore, bioactivated MUC1-cytoplasmic tail (CT) has been shown to act as an anti-inflammatory molecule in several airway infections and mediates the expression of anti-inflammatory genes in lung diseases such as chronic rhinosinusitis, chronic obstructive pulmonary disease and severe asthma. Bioactivated MUC1-CT has also been reported to interact with several effectors linked to cellular transformation, contributing to the progression of respiratory diseases such as lung cancer and pulmonary fibrosis. In this review, we summarise the current knowledge of MUC1 as a promising biomarker and drug target for lung disease

    Nuevos fármacos antiasmáticos : inhibición selectiva de isoenzimas de la fosfodiesterasa

    Get PDF
    The identification of cyclic nucleotide phosphodiesterase (PDE), the enzyme responsible for the intracellular degradation of cAMP and cGMP, as the target for methyxanthines has given rise to a reserch effort resulting in the characterization of multiple PDE isoenzymes (PDE 1 to PDE 9), their specific tissular distribution and development of selective inhibitors for some of these isoenzymes. This bioavailability of theese selective PDE isoenzyme inhibitors has permitted studies with regard to their potential value as antiasthmatic drugs. Although the basic research is being intensive, most of the selective PDE isoenzyme inhibitors are beginning to be subjected to clinical trials to asses their usefulness in the treatment of this pathology. Future research should be aimed at ascertaining the tissular distribution of the PDEs and their role in physiophathology, phosphodiesterase inhibitors.La identificación de la fosfodiesterasa de nucleótidos cíclicos (PDE), enzima responsable de la destrucción del AMPc y el GMPc intracelular, como punto de acción para las metilxantinas ha originado una creciente actividad investigadora en este campo. Esto ha tenido como resultado la caracterización de múltiples isoenzimas de PDE (PDE1 a PDE 9), su distribución tisular específica, y el descubrimiento y desarrollo de fármacos inhibidores selectivos para algunos de estos iosenzimas. La disponibilidad de los fármacos inhibidores selectivos de isoenzimas de PDE ha permitido estudios experimentales in vitro e in vivo, cuyo fin era determinar su valor potencial como fármacos antiasmáticos. Aunque la investigación básica está siendo muy importante, la mayoría de los fármacos inhibidores selectivos de PDE están empezando a someterse a ensayos clínicos para valorar su utilidad en el tratamiento de esta patología. La investigación futura debe dirigirse a conocer mejor la distribución tisular de la PDE y su papel en la fisiopatología, así como paramoléculas inhibidoras de la fosfodiesterasa

    Nuevos avances en medicamentos: avances en el tratamiento de las enfermedades pulmonares

    Get PDF
    Nuevos avances en medicamentos: avances en el tratamiento de las enfermedades pulmonares

    High-Speed Video Microscopy for Primary Ciliary Dyskinesia Diagnosis: A Study of Ciliary Motility Variations with Time and Temperature

    Get PDF
    Primary ciliary dyskinesia (PCD) is a rare disease resulting from a defect in ciliary function that generates, among other issues, chronic upper and lower respiratory tract infections. European guidelines recommend studying ciliary function (pattern (CBP) and frequency (CBF)), together with characteristic clinical symptoms, as one of the definitive tests. However, there is no “gold standard”. The present study aims to use high-speed video microscopy to describe how CBF and CBP alter over time and at different temperatures to reduce the error rate in the diagnosis of PCD. Samples of nasal epithelium from 27 healthy volunteers were studied to assess CBF and CBP at 0, 3, 24, 48, and 72 h, at room temperature and 4 °C. It was observed that CBF increased while CBP became dyskinetic, both at room temperature and at 4 °C, as time passed, especially after 3 h. In order to preserve all ciliary function parameters and to perform a reliable analysis to improve the diagnostic process of PCD, analysis should be performed within the first 3 h of sample collection, preferably in reference centers

    Molecular and Clinical Predictors of Quality of Life in Chronic Rhinosinusitis with Nasal Polyps

    Get PDF
    Factors influencing the quality of life (QoL) of patients with chronic rhinosinusitis with nasal polyposis (CRSwNP) are poorly understood. We set out to determine the predictive factors on patients' QoL using the Sino-Nasal Outcome Test-22 (SNOT-22); (2) Methods: An ambispective analysis of data from patients diagnosed with CRSwNP in our institution. All the patients underwent a nasal polyp biopsy and completed the SNOT-22 questionnaire. Demographic and molecular data as well as the SNOT-22 scores were collected. Patients were classified in six subgroups considering the presence of asthma, non-steroidal drugs (NSAID) intolerance and corticosteroid resistance; (3) Results: The mean SNOT-22 score was 39. Considering the clinical parameters, the SNOT-22 value was significantly associated with NSAID intolerance (p = 0.04) and the endoscopic polyp score (p = 0.04). A high SNOT-22 value was also correlated with high tissue eosinophilia (p = 0.01) and high IL-8 expression; (4) Conclusions: Eosinophilia, IL-8 expression and NSAID intolerance can be used as predictors of worse QoL in patients with CRSwNP

    ISG15 Is Upregulated in Respiratory Syncytial Virus Infection and Reduces Virus Growth through Protein ISGylation

    Get PDF
    UNLABELLED: Human respiratory syncytial virus (RSV), for which neither a vaccine nor an effective therapeutic treatment is currently available, is the leading cause of severe lower respiratory tract infections in children. Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein that is highly increased during viral infections and has been reported to have an antiviral or a proviral activity, depending on the virus. Previous studies from our laboratory demonstrated strong ISG15 upregulation during RSV infection in vitro. In this study, an in-depth analysis of the role of ISG15 in RSV infection is presented. ISG15 overexpression and small interfering RNA (siRNA)-silencing experiments, along with ISG15 knockout (ISG15(-/-)) cells, revealed an anti-RSV effect of the molecule. Conjugation inhibition assays demonstrated that ISG15 exerts its antiviral activity via protein ISGylation. This antiviral activity requires high levels of ISG15 to be present in the cells before RSV infection. Finally, ISG15 is also upregulated in human respiratory pseudostratified epithelia and in nasopharyngeal washes from infants infected with RSV, pointing to a possible antiviral role of the molecule in vivo. These results advance our understanding of the innate immune response elicited by RSV and open new possibilities to control infections by the virus. IMPORTANCE: At present, no vaccine or effective treatment for human respiratory syncytial virus (RSV) is available. This study shows that interferon-stimulated gene 15 (ISG15) lowers RSV growth through protein ISGylation. In addition, ISG15 accumulation highly correlates with the RSV load in nasopharyngeal washes from children, indicating that ISG15 may also have an antiviral role in vivo. These results improve our understanding of the innate immune response to RSV and identify ISG15 as a potential target for virus control.This work was supported by grant PI11/00590 from Fondo de Investigación Sanitaria to I.M.S

    Roflumilast N-oxide inhibits bronchial epithelial to mesenchymal transition induced by cigarette smoke in smokers with COPD

    Get PDF
    BACKGROUND: Epithelial to mesenchymal transition (EMT) is under discussion as a potential mechanism of small airway remodelling in COPD. In bronchial epithelium of COPD and smokers markers of EMT were described. In vitro, EMT may be reproduced by exposing well-differentiated human bronchial epithelial cells (WD-HBEC) to cigarette smoke extract (CSE). EMT may be mitigated by an increase in cellular cAMP. OBJECTIVE: This study explored the effects of roflumilast N-oxide, a PDE4 inhibitor on CSE-induced EMT in WD-HBEC and in primary bronchial epithelial cells from smokers and COPD in vitro. METHODS: WD-HBEC from normal donors were stimulated with CSE (2.5%) for 72 h in presence of roflumilast N-oxide (2 nM or 1 μM) or vehicle. mRNA and protein of EMT markers αSMA, vimentin, collagen-1, E-cadherin, ZO-1, KRT5 as well as NOX4 were quantified by real-time quantitative PCR or protein array, respectively. Phosphorylated and total ERK1/2 and Smad3 were assessed by protein array. cAMP and TGFβ1 were measured by ELISA. Reactive oxygen species (ROS) were determined by DCF fluorescence, after 30 min CSE (2.5%). Apoptosis was measured with Annexin V/PI labelling. In some experiments, EMT markers were determined in monolayers of bronchial epithelial cells from smokers, COPD versus controls. RESULTS: Roflumilast N-oxide protected from CSE-induced EMT in WD-HBEC. The PDE4 inhibitor reversed both the increase in mesenchymal and the loss in epithelial EMT markers. Roflumilast N-oxide restored the loss in cellular cAMP following CSE, reduced ROS, NOX4 expression, the increase in TGFβ1 release, phospho ERK1/2 and Smad3. The PDE4 inhibitor partly protected from the increment in apoptosis with CSE. Finally the PDE4 inhibitor decreased mesenchymal yet increased epithelial phenotype markers in HBEC of COPD and smokers. CONCLUSIONS: Roflumilast N-oxide may mitigate epithelial-mesenchymal transition in bronchial epithelial cells in vitro

    The Jak2 Pathway Is Activated In Idiopathic Pulmonary Fibrosis

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal fibrotic disorder, with no curative therapies. The signal transducer and activator of transcription 3 (STAT3) protein is activated in lung fibroblasts and alveolar type II cells (ATII), thereby contributing to lung fibrosis in IPF. Although activation of Janus kinase 2 (JAK2) has been implicated in proliferative disorders, its role in IPF is unknown. The aim of this study was to analyze JAK2 activation in IPF, and to determine whether JAK2/STAT3 inhibition is a potential therapeutic strategy for this disease. Methods and results: JAK2/p-JAK2 and STAT3/pSTAT3 expression was evaluated using quantitative real time-PCR, western blotting, and immunohistochemistry. Compared to human healthy lung tissue (n = 10) both proteins were upregulated in the lung tissue of IPF patients (n = 12). Stimulating primary ATII and lung fibroblasts with transforming growth factor beta 1 or interleukin (IL)-6/IL-13 activated JAK2 and STAT3, inducing epithelial to mesenchymal and fibroblast to myofibroblast transitions. Dual p-JAK2/p-STAT3 inhibition with JSI-124 or silencing of JAK2 and STAT3 genes suppressed ATII and the fibroblast to myofibroblast transition, with greater effects than the sum of those obtained using JAK2 or STAT3 inhibitors individually. Dual rather than single inhibition was also more effective for inhibiting fibroblast migration, preventing increases in fibroblast senescence and Bcl-2 expression, and ameliorating impaired autophagy. In rats administered JSI-124, a dual inhibitor of p-JAK2/p-STAT3, at a dose of 1 mg/kg/day, bleomycin-induced lung fibrosis was reduced and collagen deposition in the lung was inhibited, as were JAK2 and STAT3 activation and several markers of fibrosis, autophagy, senescence, and anti-apoptosis. Conclusions: JAK2 and STAT3 are activated in IPF, and their dual inhibition may be an attractive strategy for treating this disease

    Investigation of guided wave propagation in pipes fully- and partially-embedded in concrete

    Get PDF
    The application of long-range guided-wave testing to pipes embedded in concrete results in unpredictable test-ranges. The influence of the circumferential extent of the embedding-concrete around a steel pipe on the guided wave propagation is investigated. An analytical model is used to study the axisymmetric fully embedded pipe case, while explicit finite-element and semi-analytical finite-element simulations are utilised to investigate a partially embedded pipe. Model predictions and simulations are compared with full-scale guided-wave tests. The transmission-loss of the T(0,1)-mode in an 8 in. steel pipe fully embedded over an axial length of 0.4 m is found to be in the range of 32–36 dB while it reduces by a factor of 5 when only 50% of the circumference is embedded. The transmission-loss in a fully embedded pipe is mainly due to attenuation in the embedded section while in a partially embedded pipe it depend strongly on the extent of mode-conversion at entry to the embedded-section; low loss modes with energy concentrated in the region of the circumference not-covered with concrete have been identified. The results show that in a fully embedded pipe, inspection beyond a short distance will not be possible, whereas when the concrete is debonded over a fraction of the pipe circumference, inspection of substantially longer lengths may be possible
    corecore