191 research outputs found
Shared Antigenic Epitopes on the V3 Loop of HIV-1 gp120 and Proteins on Activated Human T Cells
AbstractProliferation of HIV-1 in the infected host is characterized by a progressive loss of CD4+T lymphocytes and consequent dysregulation of the immune system. Both direct and indirect mechanisms have been proposed. We show here that proteins with molecular weights 35, 48, and 110 kDa on stimulated primary human T cells are recognized by neutralizing antibodies against the V3 loop of HIV-1 gp120. Recognition is specific since it can be blocked by a recombinant HIV-1 gp120. Furthermore, these V3 monoclonal antibodies, as well as sera from AIDS patients that recognized these V3-like proteins, induced killing of HIV-1-infected as well as uninfected T cells. This killing was also inhibited by HIV-1 gp120 V3 peptides. These results indicate that the V3 loop shares epitopes with proteins on stimulated T cells. This may be an additional autoimmune mechanism contributing to CD4+T cell disappearance in AIDS. V3 antibodies have been proposed as potential prophylactic agents. However, if such vaccines were based on certain epitopes, they might induce cross-reacting immune responses with cellular proteins. Vaccine candidates should be evaluated for such potential effects
Recommended from our members
Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles
Background: Nanoparticle pharmacokinetics and biological effects are influenced by several factors. We assessed the effects of amorphous SiO2 coating on the pharmacokinetics of zinc oxide nanoparticles (ZnO NPs) following intratracheal (IT) instillation and gavage in rats. Methods: Uncoated and SiO2-coated ZnO NPs were neutron-activated and IT-instilled at 1 mg/kg or gavaged at 5 mg/kg. Rats were followed over 28 days post-IT, and over 7 days post-gavage. Tissue samples were analyzed for 65Zn radioactivity. Pulmonary responses to instilled NPs were also evaluated at 24 hours. Results: SiO2-coated ZnO elicited significantly higher inflammatory responses than uncoated NPs. Pulmonary clearance of both 65ZnO NPs was biphasic with a rapid initial t1/2 (0.2 - 0.3 hours), and a slower terminal t1/2 of 1.2 days (SiO2-coated ZnO) and 1.7 days (ZnO). Both NPs were almost completely cleared by day 7 (>98%). With IT-instilled 65ZnO NPs, significantly more 65Zn was found in skeletal muscle, liver, skin, kidneys, cecum and blood on day 2 in uncoated than SiO2-coated NPs. By 28 days, extrapulmonary levels of 65Zn from both NPs significantly decreased. However, 65Zn levels in skeletal muscle, skin and blood remained higher from uncoated NPs. Interestingly, 65Zn levels in bone marrow and thoracic lymph nodes were higher from coated 65ZnO NPs. More 65Zn was excreted in the urine from rats instilled with SiO2-coated 65ZnO NPs. After 7 days post-gavage, only 7.4% (uncoated) and 6.7% (coated) of 65Zn dose were measured in all tissues combined. As with instilled NPs, after gavage significantly more 65Zn was measured in skeletal muscle from uncoated NPs and less in thoracic lymph nodes. More 65Zn was excreted in the urine and feces with coated than uncoated 65ZnO NPs. However, over 95% of the total dose of both NPs was eliminated in the feces by day 7. Conclusions: Although SiO2-coated ZnO NPs were more inflammogenic, the overall lung clearance rate was not affected. However, SiO2 coating altered the tissue distribution of 65Zn in some extrapulmonary tissues. For both IT instillation and gavage administration, SiO2 coating enhanced transport of 65Zn to thoracic lymph nodes and decreased transport to the skeletal muscle
Silica coating influences the corona and biokinetics of cerium oxide nanoparticles
Background
The physicochemical properties of nanoparticles (NPs) influence their biological outcomes. Methods
We assessed the effects of an amorphous silica coating on the pharmacokinetics and pulmonary effects of CeO2 NPs following intratracheal (IT) instillation, gavage and intravenous injection in rats. Uncoated and silica-coated CeO2 NPs were generated by flame spray pyrolysis and later neutron-activated. These radioactive NPs were IT-instilled, gavaged, or intravenously (IV) injected in rats. Animals were analyzed over 28 days post-IT, 7 days post-gavage and 2 days post-injection. Results
Our data indicate that silica coating caused more but transient lung inflammation compared to uncoated CeO2. The transient inflammation of silica-coated CeO2 was accompanied by its enhanced clearance. Then, from 7 to 28 days, clearance was similar although significantly more 141Ce from silica-coated (35 %) was cleared than from uncoated (19 %) 141CeO2 in 28 days. The protein coronas of the two NPs were significantly different when they were incubated with alveolar lining fluid. Despite more rapid clearance from the lungs, the extrapulmonary 141Ce from silica-coated 141CeO2 was still minimal (\u3c1 %) although lower than from uncoated 141CeO2 NPs. Post-gavage, nearly 100 % of both NPs were excreted in the feces consistent with very low gut absorption. Both IV-injected 141CeO2 NP types were primarily retained in the liver and spleen. The silica coating significantly altered the plasma protein corona composition and enhanced retention of 141Ce in other organs except the liver. Conclusion
We conclude that silica coating of nanoceria alters the biodistribution of cerium likely due to modifications in protein corona formation after IT and IV administration
Silica coating influences the corona and biokinetics of cerium oxide nanoparticles
Background
The physicochemical properties of nanoparticles (NPs) influence their biological outcomes. Methods
We assessed the effects of an amorphous silica coating on the pharmacokinetics and pulmonary effects of CeO2 NPs following intratracheal (IT) instillation, gavage and intravenous injection in rats. Uncoated and silica-coated CeO2 NPs were generated by flame spray pyrolysis and later neutron-activated. These radioactive NPs were IT-instilled, gavaged, or intravenously (IV) injected in rats. Animals were analyzed over 28 days post-IT, 7 days post-gavage and 2 days post-injection. Results
Our data indicate that silica coating caused more but transient lung inflammation compared to uncoated CeO2. The transient inflammation of silica-coated CeO2 was accompanied by its enhanced clearance. Then, from 7 to 28 days, clearance was similar although significantly more 141Ce from silica-coated (35 %) was cleared than from uncoated (19 %) 141CeO2 in 28 days. The protein coronas of the two NPs were significantly different when they were incubated with alveolar lining fluid. Despite more rapid clearance from the lungs, the extrapulmonary 141Ce from silica-coated 141CeO2 was still minimal (\u3c1 %) although lower than from uncoated 141CeO2 NPs. Post-gavage, nearly 100 % of both NPs were excreted in the feces consistent with very low gut absorption. Both IV-injected 141CeO2 NP types were primarily retained in the liver and spleen. The silica coating significantly altered the plasma protein corona composition and enhanced retention of 141Ce in other organs except the liver. Conclusion
We conclude that silica coating of nanoceria alters the biodistribution of cerium likely due to modifications in protein corona formation after IT and IV administration
Recommended from our members
Biokinetics and effects of barium sulfate nanoparticles
Background: Nanoparticulate barium sulfate has potential novel applications and wide use in the polymer and paint industries. A short-term inhalation study on barium sulfate nanoparticles (BaSO4 NPs) was previously published [Part Fibre Toxicol 11:16, 2014]. We performed comprehensive biokinetic studies of 131BaSO4 NPs administered via different routes and of acute and subchronic pulmonary responses to instilled or inhaled BaSO4 in rats. Methods: We compared the tissue distribution of 131Ba over 28 days after intratracheal (IT) instillation, and over 7 days after gavage and intravenous (IV) injection of 131BaSO4. Rats were exposed to 50 mg/m3 BaSO4 aerosol for 4 or 13 weeks (6 h/day, 5 consecutive days/week), and then gross and histopathologic, blood and bronchoalveolar lavage (BAL) fluid analyses were performed. BAL fluid from instilled rats was also analyzed. Results: Inhaled BaSO4 NPs showed no toxicity after 4-week exposure, but a slight neutrophil increase in BAL after 13-week exposure was observed. Lung burden of inhaled BaSO4 NPs after 4-week exposure (0.84 ± 0.18 mg/lung) decreased by 95% over 34 days. Instilled BaSO4 NPs caused dose-dependent inflammatory responses in the lungs. Instilled BaSO4 NPs (0.28 mg/lung) was cleared with a half-life of ≈ 9.6 days. Translocated 131Ba from the lungs was predominantly found in the bone (29%). Only 0.15% of gavaged dose was detected in all organs at 7 days. IV-injected 131BaSO4 NPs were predominantly localized in the liver, spleen, lungs and bone at 2 hours, but redistributed from the liver to bone over time. Fecal excretion was the dominant elimination pathway for all three routes of exposure. Conclusions: Pulmonary exposure to instilled BaSO4 NPs caused dose-dependent lung injury and inflammation. Four-week and 13-week inhalation exposures to a high concentration (50 mg/m3) of BaSO4 NPs elicited minimal pulmonary response and no systemic effects. Instilled and inhaled BaSO4 NPs were cleared quickly yet resulted in higher tissue retention than when ingested. Particle dissolution is a likely mechanism. Injected BaSO4 NPs localized in the reticuloendothelial organs and redistributed to the bone over time. BaSO4 NP exhibited lower toxicity and biopersistence in the lungs compared to other poorly soluble NPs such as CeO2 and TiO2. Electronic supplementary material The online version of this article (doi:10.1186/s12989-014-0055-3) contains supplementary material, which is available to authorized users
Childhood leukemia: electric and magnetic fields as possible risk factors.
Numerous epidemiologic studies have reported associations between measures of power-line electric or magnetic fields (EMFs) and childhood leukemia. The basis for such associations remains unexplained. In children, acute lymphoblastic leukemia represents approximately three-quarters of all U.S. leukemia types. Some risk factors for childhood leukemia have been established, and others are suspected. Pathogenesis, as investigated in animal models, is consistent with the multistep model of acute leukemia development. Studies of carcinogenicity in animals, however, are overwhelmingly negative and do not support the hypothesis that EMF exposure is a significant risk factor for hematopoietic neoplasia. We may fail to observe effects from EMFs because, from a mechanistic perspective, the effects of EMFs on biology are very weak. Cells and organs function despite many sources of chemical "noise" (e.g., stochastic, temperature, concentration, mechanical, and electrical noise), which exceed the induced EMF "signal" by a large factor. However, the inability to detect EMF effects in bioassay systems may be caused by the choice made for "EMF exposure." "Contact currents" or "contact voltages" have been proposed as a novel exposure metric, because their magnitude is related to measured power-line magnetic fields. A contact current occurs when a person touches two conductive surfaces at different voltages. Modeled analyses support contact currents as a plausible metric because of correlations with residential magnetic fields and opportunity for exposure. The possible role of contact currents as an explanatory variable in the reported associations between EMFs and childhood leukemia will need to be clarified by further measurements, biophysical analyses, bioassay studies, and epidemiology
Recommended from our members
Environmental Mold and Mycotoxin Exposures Elicit Specific Cytokine and Chemokine Responses
Background: Molds can cause respiratory symptoms and asthma. We sought to use isolated peripheral blood mononuclear cells (PBMCs) to understand changes in cytokine and chemokine levels in response to mold and mycotoxin exposures and to link these levels with respiratory symptoms in humans. We did this by utilizing an ex vivo assay approach to differentiate mold-exposed patients and unexposed controls. While circulating plasma chemokine and cytokine levels from these two groups might be similar, we hypothesized that by challenging their isolated white blood cells with mold or mold extracts, we would see a differential chemokine and cytokine release. Methods and Findings: Peripheral blood mononuclear cells (PBMCs) were isolated from blood from 33 patients with a history of mold exposures and from 17 controls. Cultured PBMCs were incubated with the most prominent Stachybotrys chartarum mycotoxin, satratoxin G, or with aqueous mold extract, ionomycin, or media, each with or without PMA. Additional PBMCs were exposed to spores of Aspergillus niger, Cladosporium herbarum and Penicillium chrysogenum. After 18 hours, cytokines and chemokines released into the culture medium were measured by multiplex assay. Clinical histories, physical examinations and pulmonary function tests were also conducted. After ex vivo PBMC exposures to molds or mycotoxins, the chemokine and cytokine profiles from patients with a history of mold exposure were significantly different from those of unexposed controls. In contrast, biomarker profiles from cells exposed to media alone showed no difference between the patients and controls. Conclusions: These findings demonstrate that chronic mold exposures induced changes in inflammatory and immune system responses to specific mold and mycotoxin challenges. These responses can differentiate mold-exposed patients from unexposed controls. This strategy may be a powerful approach to document immune system responsiveness to molds and other inflammation-inducing environmental agents
Recommendations for implementing lung cancer screening with low-dose computed tomography in Europe
Lung cancer screening (LCS) with low-dose computed tomography (LDCT) was
demonstrated in the National Lung Screening Trial (NLST) to reduce mortality from the disease.
European mortality data has recently become available from the Nelson randomised controlled
trial, which confirmed lung cancer mortality reductions by 26% in men and 39–61% in women.
Recent studies in Europe and the USA also showed positive results in screening workers exposed to
asbestos. All European experts attending the “Initiative for European Lung Screening (IELS)”—a
large international group of physicians and other experts concerned with lung cancer—agreed that
LDCT-LCS should be implemented in Europe. However, the economic impact of LDCT-LCS and
guidelines for its effective and safe implementation still need to be formulated. To this purpose, the
IELS was asked to prepare recommendations to implement LCS and examine outstanding issues.
A subgroup carried out a comprehensive literature review on LDCT-LCS and presented findings at
a meeting held in Milan in November 2018. The present recommendations reflect that consensus
was reached
- …