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Checkpoint-blocker-induced autoimmunity is associated with
favourable outcome in metastatic melanoma and distinct T-cell
expression profiles
Weiyu Ye1, Anna Olsson-Brown 2,3, Robert A. Watson4,5, Vincent T. F. Cheung6, Robert D. Morgan7, Isar Nassiri4,5, Rosalin Cooper4,5,
Chelsea A. Taylor4,5, Umair Akbani2,3, Oliver Brain6, Rubeta N. Matin4,8, Nicholas Coupe 4, Mark R. Middleton 4,9, Mark Coles9,10,
Joseph J. Sacco 2,3, Miranda J. Payne4 and Benjamin P. Fairfax4,5,9

BACKGROUND: Immune checkpoint blockers (ICBs) activate CD8+ T cells, eliciting both anti-cancer activity and immune-related
adverse events (irAEs). The relationship of irAEs with baseline parameters and clinical outcome is unclear.
METHODS: Retrospective evaluation of irAEs on survival was performed across primary (N= 144) and secondary (N= 211)
independent cohorts of patients with metastatic melanoma receiving single agent (pembrolizumab/nivolumab—sICB) or
combination (nivolumab and ipilimumab—cICB) checkpoint blockade. RNA from pre-treatment and post-treatment CD8+ T cells
was sequenced and differential gene expression according to irAE development assessed.
RESULTS: 58.3% of patients developed early irAEs and this was associated with longer progression-free (PFS) and overall survival
(OS) across both cohorts (log-rank test, OS: P < 0.0001). Median survival for patients without irAEs was 16.6 months (95% CI:
10.9–33.4) versus not-reached (P= 2.8 × 10−6). Pre-treatment monocyte and neutrophil counts, but not BMI, were additional
predictors of clinical outcome. Differential expression of numerous gene pathway members was observed in CD8+ T cells according
to irAE development, and patients not developing irAEs demonstrating upregulated CXCR1 pre- and post-treatment.
CONCLUSIONS: Early irAE development post-ICB is associated with favourable survival in MM. Development of irAEs is coupled to
expression of numerous gene pathways, suggesting irAE development in-part reflects baseline immune activation.
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BACKGROUND
Immune checkpoint blockade (ICB) therapy has transformed the
outlook for metastatic melanoma (MM) patients. Current ICB
standard-of-care consists of either anti-PD1 monotherapy (nivolu-
mab or pembrolizumab, sICB), associated with a 5-year overall
survival (OS) of 30–40%,1 or combined anti-CTLA-4/ anti-PD1
(ipilimumab and nivolumab, cICB) associated with a median OS
exceeding 5 years.2

A key concern with ICB is the high incidence of immune-
related adverse events (irAEs), especially among patients
receiving cICB.3 IrAEs can be challenging to manage, requiring
treatment interruption or discontinuation and systemic immu-
nosuppression. Whether irAE development impacts long-term
outcomes is unclear and real-world data are lacking. Several
retrospective studies have observed an association between
development of irAEs and improved treatment response in ICB
treated MM patients, suggesting that reduced tolerance to self-

antigens and reduced tolerance to tumour antigens are closely
linked.4–10 This is not consistently observed, however,11,12

potentially reflecting confounding factors including differences
between trial and real-world clinical populations. Within the UK
National Health Service, patients are stratified to cICB or sICB
depending on clinical features and patient preferences. Outside
of targeted agents in the presence of an activating BRAF
mutation, sICB recipients have access to second-line ipilimumab;
whereas cICB recipients with disease progression have no
further standard-of-care options.
With this in mind, we have assayed the incidence and severity

of irAEs in MM patients treated with ICBs across two prospectively
recruited cohorts from tertiary UK centres, to explore how early
irAE development impacts clinical outcome. We have subse-
quently analysed CD8+ T-cell RNA sequencing from a subset of
the cohort to investigate the relationship between gene expres-
sion and irAE development.
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METHODS
Patients
Participants were ≥18 years with diagnosed MM, receiving ≥1
cycle of ICB and provided written consent to participation (Oxford
Radcliffe Biobank, 09/H0606/5+ 5, applications: OCHRe 16/A019,
18/A064). One hundred and forty-four patients were prospectively
recruited between 23/11/2015–15/4/2019 (see Supplementary
Data for demographics). Sixty-three patients received cICB
(ipilimumab 3mg/kg plus nivolumab 1mg/kg 3 weekly for ≤4
treatment cycles), followed by maintenance nivolumab. Eighty-
one patients receiving sICB therapy consisting of nivolumab 480
mg monthly, or pembrolizumab 2mg/kg three weekly (69
pembrolizumab, 12 nivolumab). Seven patients had prior auto-
immunity. Median number of cycles received per patient was 4 for
cICB, and 8 for sICB therapy. Median follow-up duration was 18.3
(0.3–55.9) months. The replication cohort consisted of 211 patients
treated at The Clatterbridge Cancer Centre, Liverpool (cICB:74,
sICB:137) from 1/1/2016–7/1/2019 (HYST study: 12/NW/0525, local
approval 17–18/40). Patients received ICB therapy until unaccep-
table irAEs, progressive disease, death or patient withdrawal. CD8+

T cells were isolated and RNA extracted as previously described
from the Oxford cohort.13

Study design
Patient demographic and clinical characteristics were collected
from electronic medical records. IrAEs were reported according to
the National Cancer Institute Common Terminology Criteria for
Adverse Events (CTCAE) version 4.03 with pneumonitis being
diagnosed via CT. Radiological response was defined by the
Response Evaluation Criteria in Solid Tumours (RECIST) version
1.1,14 OS and PFS.

Outcomes
We compared irAE characteristics, predictors of irAE development,
and the OS and PFS in patients developing early irAEs versus those
who did not. Early irAEs were defined as those before completion
prior to receipt of the 5th cycle of treatment (equivalent to
12 weeks from commencement, the timepoint chosen as cICB
therapy switches to maintenance nivolumab after four cycles of
ipilimumab plus nivolumab). OS was defined as time from ICB
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starting to death from any cause. PFS was defined as the time
from ICB starting to disease progression determined by serial
cross-sectional imaging, or death.

Statistical analysis
Categorical variables were summarised using frequencies and
percentages, and continuous variables using medians and ranges.
The time-dependent nature of developing irAEs leads to
guarantee-time bias susceptibility,15 thus we performed a 12-
week landmark analyses. Only patients alive or without disease
progression at 12 weeks being included in the OS and PFS
landmark analyses, respectively, patients being grouped according
to irAE development prior to 12 weeks. OS and PFS was estimated
using Kaplan–Meier analysis, with statistical significance deter-
mined using the log-rank test. Logistic regression was used to
determine predictors of irAEs. Associations between prognostic
factors and survival were investigated using univariable and
multivariable Cox proportional hazards models. P < 0.05 was
considered statistically significant and multiple testing was
corrected using False Discovery Rate (FDR). Analyses were
performed in R (v.3.5.1) using packages survminer,16 survival.17

Expression analysis
Poly(A) RNA sequencing was performed as previously described,13

generating high-quality transcriptomes for expression analysis of
pre-treatment and day 21 samples from 96 patients. Read counts
were generated using HTSeq18 and differential expression
performed using DESeq2.19 We controlled for the first principal
component of expression, treatment, timepoint and sex. Pathway
analysis was performed in XGR20 with the GOBP dataset,“elim”
algorithm and hypergeometric test across all nominally significant
(FDR < 0.5) genes. For cytokine analysis plasma samples were
analysed on the Luminex cytokine platform for multiple analytes
including IL-8.

RESULTS
Immune-related adverse events
Treatment-related irAEs were reported in 93/144 (64.6%) patients,
with 84 patients (58.3%) experiencing an irAE prior to cycle 5 and
43 (29.9%) of these patients having irAEs of grade 3/4 severity
(Supplementary Table 1). There were no treatment-related deaths.
Cutaneous irAEs, colitis and hepatitis occurred early post-ICB
initiation (median 37, 34 and 51 days respectively); whereas
gastritis and pneumonitis occurred late, with median time to
onset of 386 and 378 days (Supplementary Fig. 1a, Supplementary
Table 2). cICB recipients had over two-fold increase in any grade
irAE frequency, and over four-fold increase in the frequency of
grade 3/4 irAEs (Supplementary Data) compared to sICB recipients.
Forty-one percent of cICB patients experienced irAEs affecting ≥3
organs versus 4% of patients treated with sICB (Supplementary
Fig. 1b). Of those with early irAEs, 54/57 (95%) cICB and 10/27
(37%) sICB patients received steroids. ICB was temporarily
interrupted in 18 (16 cICB, 2 sICB) patients and discontinued in
a further 43/93 (46%) patients who experienced irAEs (31 cICB,
12 sICB). Putative risk factors for irAEs including baseline
neutrophil and monocyte counts, age, sex, BMI, prior autoimmu-
nity and treatment type were evaluated using multivariate
regression. The model with the lowest Akaike Information Criteria
incorporated sex, neutrophil count and treatment type, and
demonstrated that only cICB treatment (OR= 27.5, 95% CI
9.8–96.5, P= 7.7 × 10−9) and neutrophil count (OR= 0.82, 95%
CI 0.69–0.95, P= 9.7 × 10−3) predicted early irAEs (Supplementary
Fig. 1c).

Oncological outcomes
Among 144 patients, 64 (44%) experienced a complete or partial
response to ICB at initial radiological assessment (3-month CT),

whereas 26 patients (18.1%) had stable disease, and 42 (29.2%)
had progressive disease. For the remaining 11 (7.6%) patients,
sequential cross-sectional imaging was unavailable; however, 9
(6.3%) patients had clear clinical progression. The median OS was
35.2 months (95% CI 30.2-Inf months), with median PFS of
18.1 months (95% CI 6.2-Inf months). The 1-year OS and PFS rates
were 75% (95% CI 68–82) and 51% (95% CI 43–61), respectively. At
2 years, the OS and PFS rates were 63% (95% CI 55–72) and 40%
(95% CI 31–51), respectively. Development of an early irAE prior to
the 5th cycle of treatment was associated with significantly longer
OS and PFS (Fig. 1a, OS P < 0.0001, PFS P= 0.00024, Supplemen-
tary Fig. 2a). This observation remained significant for OS when
stratifying patients according to treatment received (Fig. 1b, c,
Supplementary Fig. 2b, c). When analysis was confined to patients
only developing mild grade 1/2 irAEs we again observed an OS
benefit (Supplementary Fig. 2d), and this was the case when just
assessing grade 3/4 irAEs (Supplementary Fig. 2e). To control for

a

b

+
+++

+
++
+ ++++++++++ ++++++++++++

+++++ +++++++++++ ++ +

+
+ ++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++ +++++++++ + + +

P < 0.0001

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60
Months

O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y

Combined data
irAE pre cycle 5

+
+

No

Yes

173 125 87 69 46 31 21 14 7 3 1 1 0

182 168 146 114 73 50 34 19 11 6 2 0 0Yes

No

Number at risk

+
++

+
+

+ +++++ +++ ++
++ ++ ++ ++++ +

+ ++
++++

++++++++++++ ++++ + ++

P = 0.00025

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40
Months

O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y

Liverpool data
irAE pre cycle 5

+
+

No

Yes

113 81 51 39 23 12 9 6 1

98 90 71 51 30 17 9 4 0Yes

No

Number at risk

Fig. 2 Kaplan-Meier curves of overall survival (OS) according to
development of any grade of irAE prior to cycle 5 for replication
cohort and combined cohort. a Kaplan–Meier curves of overall
survival (OS) for Liverpool Replication dataset stratified according to
development of irAEs prior to the fifth cycle of treatment, shaded
areas showing 95% CI, (N= 211), b Kaplan–Meier curves of OS for
combined Oxford and Liverpool datasets (N= 355). All P-values refer
to log-rank test.

Checkpoint-blocker-induced autoimmunity is associated with favourable. . .
W Ye et al.

1663



guarantee-time bias we performed a landmark analysis including
only patients who are were alive (N= 133) or who had not
progressed (N= 104) at 12 weeks. This again showed irAEs prior to
week 12 were associated with improved OS (Fig. 1d, P= 0.0017),
although this was not significant for PFS, indicating progression is
often early (Supplementary Fig. 2f, P= 0.33). Finally, we performed
a Cox regression model of OS, fitting irAE as a time-dependent
variable, so as to incorporate data across the trajectory of follow-
up, as well as age, sex and treatment type. This again
demonstrated irAEs were associated with reduced hazard ratio
for death (HR 0.29, 95% CI 0.15–0.58, P= 0.0004), whereas there
were no significant associations for the other variables (P > 0.05).

Independent replication
We further analysed a cohort of 211 MM patients (137 sICB, 74
cICB) receiving ICB at The Clatterbridge Cancer Centre, Liverpool
with a similar demographic make-up to the Oxford cohort
(Supplementary Table 3). We again found that irAEs during the
first four cycles of immunotherapy were associated with longer OS
(median 13 (95% CI: 8–23) months vs. not-reached, P= 0.00025,
Fig. 2a). Assessment of each treatment type independently
demonstrated a non-significant benefit of irAEs within the sICB
cohort (median 15 (95% CI: 9–23) vs. 26 (95% CI: 16-Inf) months,
P= 0.14). Conversely, this observation remained robust within the
cICB cohort (median 4 (95% CI: 2-Inf) months vs not-reached (95%

CI: 20-Inf), P= 2.2 × 10−7). A 12-week landmark analysis of this
dataset (n= 183) showed that even when excluding patients who
died within 3 months of treatment commencement the effect of
irAE remained significant (Supplementary Fig. 3a). Combining data
from both cohorts demonstrated early irAEs to be significantly
associated with OS time (median 13.7 (95% CI: 9–19.5) months vs
not-reached (95% CI: 35.2-Inf), P= 1.8 × 10−9, log-rank test, Fig. 2b).
This remained the case for sICB alone (median 16 (95% CI:
11.8–23) months vs not-reached (95% CI: 26-Inf), P= 0.0017) and
cICB (median 4 (95% CI: 3-Inf) months versus not-reached (95% CI:
35.2-Inf) months, P= 4.3 × 10–12). Similarly, a combined analysis of
landmarked data (n= 316) showed a median survival for those
alive after 3 months and not developing early irAE of 20 months
(95% CI: 16–28 months) versus not-reached (95% CI: 35.2-Inf
months, P= 1.1 × 10−5, Supplementary Fig. 3b), and this was
significant for each treatment alone (sICB: P= 0.0054, cICB: P=
0.0028 cICB).

Other variables associated with outcome
Univariable analysis demonstrated irAEs prior to cycle 5 and
increased baseline albumin were associated with significantly
improved OS. Conversely, non-cutaneous melanoma subtype,
raised performance status, neutrophil count, monocyte count and
baseline lactate dehydrogenase levels were negatively prognostic
(Table 1). Retrospective analysis of MM trial data from

Table 1. Predictors of oncological outcomes using univariable and multivariable Cox proportional hazard models.

Characteristic Univariable Multivariable

HR (95% CI) p-value HR (95% CI) p-value

OS Oxford

Age (mean= 65.1) 1.01 (0.99–1.03) 0.23 — —

Male sex 1.45 (0.86–2.45) 0.16 — —

Performance status (>1) 2.64 (1.33–5.26) 0.0054 1.42 (0.59–3.43) 0.43

Baseline BMI 1.01 (0.97–1.05) 0.56 — —

Baseline BMI > 25 1.36 (0.72–2.57) 0.34 — —

irAE prior to cycle 5 0.30 (0.18–0.51) 9.8 × 10−6 0.28 (0.13–0.58) 0.0006a

Anti-PD1 treatment 1.72 (0.99–2.97) 0.054 1.23 (0.53–2.89) 0.63

Prior systemic therapy 1.60 (0.93–2.74) 0.088 1.06 (0.57–1.97) 0.85

Raised LDH (>255 iu/L) 2.28 (1.18–4.40) 0.014 — —

Baseline neutrophil(1 × 106/L) 1.21 (1.12–1.30) 5.4 × 10−7 1.13 (1.01–1.26) 0.029

Baseline lymphocyte(1 × 106/L) 1.06 (0.71–1.56) 0.79 — —

Baseline monocyte(1 × 106/L) 12.0 (6.3–42.5) 8.3 × 10−8 7.00 (2.06–23.79) 0.0018a

Albumin 0.87 (0.82–0.93) 6 × 10−6 0.93 (0.87–1.01) 0.08

BRAF mutation 0.78 (0.44–1.41) 0.41 — —

Non-cutaneous melanoma 2.8 (1.4–5.6) 0.0035 1.70 (0.73–3.93) 0.22

OS Liverpool

Age (mean= 64.2) 0.98 (0.97–0.99) 0.005 0.98 (0.97–1.00) 0.013a

Male sex 1.11 (0.75–1.62) 0.61 — —

Baseline BMI 1.01 (0.97– 1.04) 0.76 — —

Baseline BMI > 25 1.13 (0.75–1.71) 0.56 — —

irAE prior to cycle 5 0.48 (0.33–0.72) 0.00033 0.48 (0.33–0.72) 0.00034a

Anti-PD1 treatment 1.28 (0.82–1.89) 0.32 — —

Prior systemic therapy 2.09 (1.05–4.16) 0.04 1.78 (0.87–3.56) 0.12

Baseline neutrophil (1 × 106/L) 1.20 (1.10–1.31) 2.2 × 10−5
— —

Baseline lymphocyte (1 × 106/L) 0.80 (0.53–1.21) 0.29 — —

Low albumin (<36 g/dl) 7.33 (3.50–15.35) 1.3 × 10−7
— —

Multivariate analysis only performed on variables where 95% or more of values were available for analysis. Albumin threshold as determined for normal range
by institution.
aSignificant after FDR correction for multiple testing.
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immunotherapy and targeted agents recently indicated a
protective association between BMI and clinical outcome.21

Interestingly, in neither the Oxford nor Liverpool cohorts did we
observe an effect of BMI in either univariable or multivariable
analyses of clinical outcome.
Multivariable analysis demonstrated early irAEs, monocyte

count and neutrophil count were nominally associated with OS
(Table 1), with irAEs and monocyte count remaining significant
after correcting for multiple testing (Table 1, Fig. 3a). In univariable
analyses of the Liverpool cohort, low albumin, increased
neutrophil count and prior systemic treatment were negatively
prognostic; whereas early irAEs and increasing age were
protective (Table 1).
We combined the datasets to provide increased power in

multivariable analyses of prognostic factors across institutions (N
= 350). Across both datasets early irAEs were associated with a
0.32 hazard ratio (95% CI: 0.22–0.49, P= 6.7 × 10−8, Table 2,
Fig. 3b). Multivariable analysis of 276 individuals with cell counts
demonstrated increased baseline neutrophil count (HR 1.16 per
unit, 95% CI: 1.08–1.24, P= 2.8 × 10−5) and low albumin (HR 2.77,
95% CI: 1.55–4.95, P= 5.8 × 10−4) were negatively associated with
oncological outcome (Table 2, Fig. 3c).

Association of irAE development with divergent CD8+ T-cell gene
expression
Identification of markers predictive of irAEs is of high interest to
immuno-oncology22 and peripheral CD8+ T-cell expression
profiles are associated with clinical outcome.13 We therefore
investigated the relationship between irAEs and peripheral
CD8+ T-cell expression from pre- (day 0) and post-treatment
(day 21) samples from patients in the Oxford cohort, correcting
for treatment type, cycle of treatment, and the first principal
component (N= 79 patients, 158 samples). In this analysis we
found 50 transcripts were differentially associated with devel-
opment of early irAEs (FDR < 0.05, Fig. 4a, Supplementary

Table 4). When analysis was confined to the pre-treatment
samples, we did not see an association of CD8+ T-cell expression
with irAE development in those who received cICB, whereas in
patients who received sICB (N= 64) we found irAE development
was associated with differential expression of 35 transcripts
(FDR < 0.05, Fig. 4b, Supplementary Table 4). Pathway analysis of
transcripts nominally associated with irAE development across
cycles of treatment (FDR < 0.5) showed gene pathways including
chemokine-mediated signalling, extracellular matrix organisa-
tion and platelet degranulation to be altered in irAE develop-
ment (Fig. 4c, Supplementary Table 5), while analysis of those
associated with subsequent development of irAEs in sICB
recipients including pathways involved in antimicrobial
responses, phagocytosis and complement activation (Fig. 4d,
Supplementary Table 5).

CXCR1 and irAE
We found increased expression of CXCR1, and to a lesser extent
CXCR2 (Supplementary Table 4), encoding chemokine receptors
for IL-8, to be associated with reduced development of irAEs pre-
and post-treatment (Fig. 4e). Given circulating IL-8 levels are
negatively prognostic across ICB treatments23 we explored the
relationship between plasma IL-8 and CD8+ CXCR1 expression (N
= 19 patient samples). Notably we found post-treatment samples
from individuals with detectable plasma IL-8 (>1 pg/ml) showed
increased CXCR1 expression, in keeping with raised levels of IL-8
potentially directly influencing CD8+ subsets (Fig. 4f). We further
explored the relationship between CXCR1 expression and irAE
development, restricting analysis to patients alive beyond 1-year
post-treatment commencement (N= 63 samples with expression
data). Dividing the cohort according to median day 21 CXCR1
expression we noted a significant association between those with
reduced CXCR1 expression and time to develop an irAE (P= 0.025,
log-rank test, Fig. 4g), further supporting a key role for this
pathway in ICB response.

Table 2. Univariable and multivariable analyses of factors associated with OS—combined datasets.

Characteristic Univariable Multivariable

HR (95% CI) p-value HR (95% CI) p-value

OS—baseline indices (n= 348)

Age 0.99 (0.98–1.00) 0.24 0.99 (0.98–1.00) 0.15

Male sex 1.24 (0.91–1.68) 0.18 1.34 (0.98–1.85) 0.07

Baseline BMI 1.01 (0.98–1.03) 0.63 — —

Baseline BMI > 25 1.13 (0.81–1.60) 0.46 1.08 (0.77–1.53) 0.65

irAE prior to cycle 5 0.39 (0.28–0.54) 6.4 × 10−9 0.32 (0.22–0.49) 6.7 × 10−8

Single agent anti-PD1 1.48 (1.06–2.06) 0.02 0.76 (0.49–1.19) 0.23

Prior systemic therapy 1.36 (0.91–2.03) 0.14 1.31 (0.86–1.99) 0.21

OS—including biochemical and haematological indices (n= 276)

Age — — 1.01 (0.98–1.01) 0.53

Male sex — — 1.48 (1.02–2.14) 0.04

Baseline BMI > 25 — — 0.88 (0.58–1.34) 0.56

irAE prior to cycle 5 — — 0.31 (0.20–0.49) 2.5 × 10−7

Anti-PD1 treatment — — 1.05 (0.62–1.77) 0.86

Prior systemic therapy — — 1.30 (0.8–2.1) 0.28

Baseline neutrophil 1.19 (1.13–1.26) 4.9 × 10−10 1.16 (1.08–1.24) 2.8 × 10−5

Baseline lymphocyte 1.11 (0.66–1.23) 0.53 0.97 (0.73–1.29) 0.84

Low albumin (per centre) 4.7 (2.87–7.70) 8.1 × 10−10 2.77 (1.55–4.95) 5.8 × 10−4

Multivariate analysis only performed on variables where 95% or more of values were available for analysis. Albumin threshold as determined for normal range
by institution.
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with those in blue having increased expression in those not developing irAE, whereas those in green are raised in those developing irAE; b As
per a but samples were confined to pre-treatment from sICB recipients; c, d Go Ontology Biological Process (GOBP) pathway analysis of genes
nominally associated (FDR < 0.5) with irAE development from a and b, respectively (y-axis: GOBP code, x-axis: fold change enrichment);
e Boxplots demonstrating association of CXCR1 expression with irAE development from pre- and post-treatment samples; f CXCR1 expression
according to detectable plasma IL-8 cytokine measurements from samples pre (left panel) and post ICB; g Kaplan–Meier curve of time to irAE
development in patients who survived for >1-year post-treatment according divided along the lines of median CD8+ T-cell CXCR1 expression
at day 21.

Checkpoint-blocker-induced autoimmunity is associated with favourable. . .
W Ye et al.

1667



DISCUSSION
Consistent with the literature,3 irAEs occur at a markedly higher
incidence in patients treated with cICB compared to sICB and are
typically more severe and more likely to involve multiple organs.
We also find increased neutrophil count was associated with
reduced irAE incidence. In this study neither sex nor autoimmune
history influenced the development of early irAEs.24 The lack of
sex effect suggests classical risk factors for autoimmune disease
may be less relevant to ICB-associated irAEs. In keeping with
others, we find distinct irAEs have a dissimilar median time-to-
onset, likely reflecting divergent pathophysiology. Cutaneous
irAEs, colitis and hepatitis typically occur early, while late
complications include gastritis and pneumonitis. The timescales
within our cohort broadly corroborate those reported in previous
studies,4,8,11,25 except for pneumonitis which occurred late at a
median time of 378 days.
Associations between irAEs and treatment response in MM are

limited to trials,4,5,7 with vitiligo, long-known to have favourable
associations with melanoma outcome, linked to an objective
response to ICB therapy.9,10 A link between irAEs and survival
benefit in ICB therapy has also been reported in non-small cell
lung cancer.26 However, not all evidence supports a link between
irAEs and improved survival.8,11,12 Here we demonstrate in the
standard-of-care setting that development of irAEs of any grade is
associated with improved OS. This observation remains significant
in the 12-week landmark analysis, ruling out a guarantee-time bias
where patients died before being able to develop irAEs.
Importantly, we replicated these observations in an independent
cohort, with treatment-specific analysis showing the effect being
highly significant in recipients of cICB, and a non-significant
directional trend in the sICB group. We note irAEs are not an
absolute requirement for oncological response, and many patients
(32% of those alive across both cohorts at 1 year) showed
response to treatment in the absence of early irAE. Multivariable
analyses of the combined datasets, however, demonstrated irAE
development was associated with outcome across treatments.
Similarly, raised pre-treatment performance status, neutrophil and
monocyte counts were negatively prognostic.
Given irAEs were frequently managed with steroids and other

immunosuppressants, these treatments are unlikely to adversely
affect prognosis. Conversely, our results suggest separating
efficacy from irAE propensity in novel agents may be difficult.
Finally, in contrast to recent cross-treatment analysis, we did not
observe an association between BMI and clinical outcome21 in
either the Oxford or Liverpool cohorts in either sex. Importantly
BMI was collected prospectively, and analysis was restricted to
immunotherapy recipients. These results suggest any link
between BMI and favourable outcome in ICB is not clear-cut
and dedicated prospective studies may add clarity.
Analysis of CD8+ T-cell gene expression and irAE development

identified divergent gene expression according to irAE develop-
ment across pre-and post-treatment samples. We could addition-
ally identify baseline changes in sICB recipients who proceeded to
develop irAE with enrichment in complement activity, innate
immunity and neutrophil degranulation pathways. The presence
of these innate immune signatures in CD8+ T cells may reflect
increased inter-cellular adherence, a common finding in activated
T cells.27 Given cICB elicits markedly greater CD8+ expression
changes than sICB,13 we postulate baseline variation in expression
is less important compared to the effect of treatment. Thus, our
data suggest propensity to develop irAEs post-sICB is in part due
to baseline CD8+ T-cell activation, which may reflect pre-
treatment anti-tumour responses. Common to baseline and
treated samples was the observed differential expression of
CXCR1, with raised expression in those not developing irAEs.
Notably, plasma IL-8, a key cytokine mediator of neutrophil
chemotaxis and ligand of CXCR1, is strongly associated with
clinical outcomes to ICB treatment.23 In a subset of samples, we

measured IL-8 levels, finding those with detectable plasma IL-8
post-treatment show increased expression of T-cell CXCR1, linking
levels of receptor and ligand. Further, we observe that day 21
CXCR1 is associated with time to develop an irAE. These
observations provide further weight to evidence linking tumour-
independent immune parameters with clinical outcome to ICB.
Our study reflects real-world scenarios, with particular relevance

to the UK healthcare setting, and our observations independently
replicate in a separate tertiary centre. Our ability to combine
clinical observations with prospectively collected transcriptomic
data identified divergences in peripheral CD8+ T-cell gene
expression linked to irAE development and implicate the IL-8:
CXCR1 axis in this process. Limitations include the retrospective
collection of clinical data and the relatively small sample size in
the primary cohort. Larger transcriptomic series involving other
cell subsets will be vital in understanding the relationship
between clinical response and irAE development. A positive
association between increased tumour mutational burden (TMB)
and response to ICB is well recognised,28 and we speculate that
TMB may relate to irAE development, with the increased neo-
antigen burden of high TMB leading to off target effects. The
clinical utility of these findings will require prospective trials, but
our results suggest that patients with raised neutrophil counts
have reduced risk of irAE development and poorer prognosis—
arguing for treatment with cICB. Conversely, in patients without
oncological responses to sICB who have not developed irAE, there
might be argument that effective immune stimulation has not
been elicited and switching to cICB could be helpful.
In conclusion, in our clinical practice early irAE development

post-ICBs is associated with a strong survival benefit in MM that
robustly reproduces in an independent centre. Furthermore, irAE
development is associated with divergent patterns of peripheral
CD8+ T-cell gene expression, with raised expression of CXCR1
being associated with reduced irAE development. Collectively,
these observations significantly further our insights into the
clinical and immunological significance of irAEs and may assist in
the application of stratified medicine.
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