25 research outputs found

    Biofluid Biomarkers in the Prognosis of Amyotrophic Lateral Sclerosis: Recent Developments and Therapeutic Applications

    Get PDF
    Amyotrophic lateral sclerosis; Biomarker; PrognosisEsclerosi lateral amiotròfica; Biomarcador; PronòsticEsclerosis lateral amiotrófica; Biomarcador; PronósticoAmyotrophic lateral sclerosis is a neurodegenerative disease characterized by the degeneration of motor neurons for which effective therapies are lacking. One of the most explored areas of research in ALS is the discovery and validation of biomarkers that can be applied to clinical practice and incorporated into the development of innovative therapies. The study of biomarkers requires an adequate theoretical and operational framework, highlighting the “fit-for-purpose” concept and distinguishing different types of biomarkers based on common terminology. In this review, we aim to discuss the current status of fluid-based prognostic and predictive biomarkers in ALS, with particular emphasis on those that are the most promising ones for clinical trial design and routine clinical practice. Neurofilaments in cerebrospinal fluid and blood are the main prognostic and pharmacodynamic biomarkers. Furthermore, several candidates exist covering various pathological aspects of the disease, such as immune, metabolic and muscle damage markers. Urine has been studied less often and should be explored for its possible advantages. New advances in the knowledge of cryptic exons introduce the possibility of discovering new biomarkers. Collaborative efforts, prospective studies and standardized procedures are needed to validate candidate biomarkers. A combined biomarkers panel can provide a more detailed disease status.This study has been funded by Instituto de Salud Carlos III through the project “PI19/0593” (co-funded by European Regional Development Fund: “A way to make Europe “)

    Mesoporous silica particles are phagocytosed by microglia and induce a mild inflammatory response in vitro

    Get PDF
    Aim: Mesoporous silica particles (MSPs) are broadly used drug delivery carriers. In this study, the authors analyzed the responses to MSPs of astrocytes and microglia, the two main cellular players in neuroinflammation. Materials & methods: Primary murine cortical mixed glial cultures were treated with rhodamine B-labeled MSPs. Results: MSPs are avidly internalized by microglial cells and remain inside the cells for at least 14 days. Despite this, MSPs do not affect glial cell viability or morphology, basal metabolic activity or oxidative stress. MSPs also do not affect mRNA levels of key proinflammatory genes; however, in combination with lipopolysaccharide, they significantly increase extracellular IL-1β levels. Conclusion: These results suggest that MSPs could be novel tools for specific drug delivery to microglial cells. Plain language summary Mesoporous silica particles (MSPs) are broadly used drug delivery carriers. In this study, the authors analyzed the responses of two types of brain cells, astrocytes and microglia, to MSPs. Mouse astrocytes and microglia were kept alive in cultures and were treated with MSPs that were labeled with a red fluorescent agent to facilitate visualization under the microscope. MSPs are avidly internalized by microglial cells and remain inside the cells for at least 14 days. Despite this, MSPs do not affect glial cell viability or morphology, basal metabolic activity or oxidative stress. When given alone, MSPs do not affect mRNA levels of key proinflammatory genes. However, MSPs given in combination with lipopolysaccharide, a strong proinflammatory agent, significantly increase extracellular levels of IL-1β, one of the proinflammatory mediators studied. These results suggest that MSPs could be novel tools for specific drug delivery to microglial cells

    Satisfaction survey with DNA cards method to collect genetic samples for pharmacogenetics studies

    Get PDF
    BACKGROUND: Pharmacogenetic studies are essential in understanding the interindividual variability of drug responses. DNA sample collection for genotyping is a critical step in genetic studies. A method using dried blood samples from finger-puncture, collected on DNA-cards, has been described as an alternative to the usual venepuncture technique. The purpose of this study is to evaluate the implementation of the DNA cards method in a multicentre clinical trial, and to assess the degree of investigators' satisfaction and the acceptance of the patients perceived by the investigators. METHODS: Blood samples were collected on DNA-cards. The quality and quantity of DNA recovered were analyzed. Investigators were questioned regarding their general interest, previous experience, safety issues, preferences and perceived patient satisfaction. RESULTS: 151 patients' blood samples were collected. Genotyping of GST polymorphisms was achieved in all samples (100%). 28 investigators completed the survey. Investigators perceived patient satisfaction as very good (60.7%) or good (39.3%), without reluctance to finger puncture. Investigators preferred this method, which was considered safer and better than the usual methods. All investigators would recommend using it in future genetic studies. CONCLUSION: Within the clinical trial setting, the DNA-cards method was very well accepted by investigators and patients (in perception of investigators), and was preferred to conventional methods due to its ease of use and safety

    Alterations in the mechanisms of control of microglial activation in Parkinson's disease: the CD200-CD200R1 system

    No full text
    Trabajo presentado en el XIV European Meeting on Glial Cells in Health and Disease, celebrado en Oporto (Portugal), del 10 al 13 de julio de 2019Microglial cells are the resident immune cells of the CNS and act as sensors of neural activity. Neurons play a relevant role in maintaining microglial cells in a non-activated/surveilling state under physiological conditions, through a series of inhibitory mechanisms. However, chronic glial activation/neuroinflammation has been described in neurodegenerative diseases, suggesting that these mechanisms have been overloaded.Supported by Instituto de Salud Carlos III, Spain-FEDER funds, EU (PI15/00033). NRL is a recipient of a FPU contract from the Spanish Ministerio de Ciencia, Innovación y Universidades

    Gene expression profiling of LPS- and LPS+IFN-activated primary murine microglia by RNAseq

    No full text
    Trabajo presentado en el IX Simposi de Neurobiologia Experimental, celebrado en Barcelona, España, el 22 y 23 de octubre de 2014Peer Reviewe

    RNA-Seq transcriptomic profiling of primary murine microglia treated with LPS or LPS + IFNγ

    No full text
    Microglia, the main resident immune cells in the CNS, are thought to participate in the pathogenesis of various neurological disorders. LPS and LPS + IFNγ are stimuli that are widely used to activate microglia. However, the transcriptomic profiles of microglia treated with LPS and LPS + IFNγ have not been properly compared. Here, we treated murine primary microglial cultures with LPS or LPS + IFNγ for 6 hours and then performed RNA-Sequencing. Gene expression patterns induced by the treatments were obtained by WGCNA and 11 different expression profiles were found, showing differential responses to LPS and LPS + IFNγ in many genes. Interestingly, a subset of genes involved in Parkinson’s, Alzheimer’s and Huntington’s disease were downregulated by both treatments. By DESeq analysis we found differentially upregulated and downregulated genes that confirmed LPS and LPS + IFNγ as inducers of microglial pro-inflammatory responses, but also highlighted their involvement in specific cell functions. In response to LPS, microglia tended to be more proliferative, pro-inflammatory and phagocytic; whereas LPS + IFNγ inhibited genes were involved in pain, cell division and, unexpectedly, production of some inflammatory mediators. In summary, this study provides a detailed description of the transcriptome of LPS- and LPS + IFNγ treated primary microglial cultures. It may be useful to determine whether these in vitro phenotypes resemble microglia in in vivo pathological conditions.MPS was a recipient of a FPU grant AP2010-5428 from the Spanish Ministerio de Educacion, Cultura y Deporte. Tis study was supported by grants PI07/455, PI10/378, PI12/709 and PI14/302 from the Instituto de Salud Carlos III, Spain, cofnanced with FEDER funds, and a grant from La Marató-TV3.Peer reviewe

    CX3CR1 Is a Modifying Gene of Survival and Progression in Amyotrophic Lateral Sclerosis

    Get PDF
    The objective of this study was to investigate the association of functional variants of the human CX3CR1 gene (Fractalkine receptor) with the risk of Amyotrophic Lateral Sclerosis (ALS), the survival and the progression rate of the disease symptoms in a Spanish ALS cohort. 187 ALS patients (142 sporadic [sALS] and 45 familial) and 378 controls were recruited. We investigated CX3CR1 V249I (rs3732379) and T280M (rs3732378) genotypes and their haplotypes as predictors of survival, the progression rate of the symptoms (as measured by ALSFRS-R and FVC decline) and the risk of suffering ALS disease. The results indicated that sALS patients with CX3CR1 249 I/I or 249 V/I genotypes presented a shorter survival time (42.27±4.90) than patients with 249 V/V genotype (67.65±7.42; diff −25.49 months 95%CI [−42.79,−8.18]; p = 0.004; adj-p = 0.018). The survival time was shorter in sALS patients with spinal topography and CX3CR1 249 I alleles (diff = −29.78 months; 95%CI [−49.42,−10.14]; p = 0.003). The same effects were also observed in the spinal sALS patients with 249 I -280 M haplotype (diff = −27.02 months; 95%CI [−49.57, −4.48]; p = 0.019). In the sALS group, the CX3CR1 249 I variant was associated with a faster progression of the disease symptoms (OR = 2.58; 95IC% [1.32, 5.07]; p = 0.006; adj-p = 0.027). There was no evidence for association of these two CX3CR1 variants with ALS disease risk. The association evidenced herein is clinically relevant and indicates that CX3CR1 could be a disease-modifying gene in sALS. The progression rate of the disease's symptoms and the survival time is affected in patients with one or two copies of the CX3CR1 249I allele. The CX3CR1 is the most potent ALS survival genetic factor reported to date. These results reinforce the role of the immune system in ALS pathogenesis

    Astroglia-Microglia Cross Talk during Neurodegeneration in the Rat Hippocampus

    No full text
    Brain injury triggers a progressive inflammatory response supported by a dynamic astroglia-microglia interplay. We investigated the progressive chronic features of the astroglia-microglia cross talk in the perspective of neuronal effects in a rat model of hippocampal excitotoxic injury. N-Methyl-D-aspartate (NMDA) injection triggered a process characterized within 38 days by atrophy, neuronal loss, and fast astroglia-mediated S100B increase. Microglia reaction varied with the lesion progression. It presented a peak of tumor necrosis factor-α (TNF-α) secretion at one day after the lesion, and a transient YM1 secretion within the first three days. Microglial glucocorticoid receptor expression increased up to day 5, before returning progressively to sham values. To further investigate the astroglia role in the microglia reaction, we performed concomitant transient astroglia ablation with L-α-aminoadipate and NMDA-induced lesion. We observed a striking maintenance of neuronal death associated with enhanced microglial reaction and proliferation, increased YM1 concentration, and decreased TNF-α secretion and glucocorticoid receptor expression. S100B reactivity only increased after astroglia recovery. Our results argue for an initial neuroprotective microglial reaction, with a direct astroglial control of the microglial cytotoxic response. We propose the recovery of the astroglia-microglia cross talk as a tissue priority conducted to ensure a proper cellular coordination that retails brain damage
    corecore