79 research outputs found

    Geographic Information System Data Analysis

    Get PDF
    Data was collected in order to further NASA Langley Research Center's Geographic Information System(GIS). Information on LaRC's communication, electrical, and facility configurations was collected. Existing data was corrected through verification, resulting in more accurate databases. In addition, Global Positioning System(GPS) points were used in order to accurately impose buildings on digitized images. Overall, this project will help the Imaging and CADD Technology Team (ICTT) prove GIS to be a valuable resource for LaRC

    The Grizzly, April 12, 2012

    Get PDF
    Fong Inauguration Approaching • UCDC Mixing Up Spring Routine • Housing Lottery Anxiety Addressed • Cuts for a Cause on Campus This Weekend • Ursinus Alumni Return to Work at Alma Mater • UC Students Travel to National Model UN Competition in NYC • Hart Interns at Great Wall Club in Beijing, China • Opinion: Saying No is Man\u27s Responsibility, Too; Delphi was a Positive Experience Despite Criticism • Men\u27s Lacrosse Battles #18 Gettysburg • Seniors Wrapping up Athletic Careershttps://digitalcommons.ursinus.edu/grizzlynews/1858/thumbnail.jp

    The Grizzly, March 22, 2012

    Get PDF
    Ursinus Remembers Sam Morgan • Senior Gift Drive Seeking Support • Professional Women Advise UC Students • AmeriCorps Reps Visit • SIFE\u27s Green Team Teaches Children to Recycle • Ursinus Mock Trial Team Competes for First Time • Rutkowski Interns in McGladrey\u27s RAS Department • UC Bonner Leaders Visit Jamaica for Service Trip • Opinion: College Meme Pages Aren\u27t a Waste; New Bruce Springsteen Lives Up to Expectations • Softball Prepped for Successful Season • March Provides Viewers Maddening Options • Gymnastics Heading to Nationalshttps://digitalcommons.ursinus.edu/grizzlynews/1855/thumbnail.jp

    Closing the gap between science and management of cold-water refuges in rivers and streams

    Get PDF
    Human activities and climate change threaten coldwater organisms in freshwater eco-systems by causing rivers and streams to warm, increasing the intensity and frequency of warm temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches of relatively cool water that are used by coldwater organisms for thermal relief and short-term survival. Globally, cohesive management approaches are needed that consider interlinked physical, biological, and social factors of cold-water refuges. We review current understanding of cold-water refuges, identify gaps between science and management, and evaluate policies aimed at protecting thermally sensitive species. Existing policies include designating cold-water habitats, restricting fishing during warm periods, and implementing threshold temperature standards or guidelines. However, these policies are rare and uncoordinated across spatial scales and often do not consider input from Indigenous peoples. We propose that cold-water refuges be managed as dis-tinct operational landscape units, which provide a social and ecological context that is relevant at the watershed scale. These operational landscape units provide the founda-tion for an integrated framework that links science and management by (1) mapping and characterizing cold-water refuges to prioritize management and conservation actions, (2) leveraging existing and new policies, (3) improving coordination across jurisdictions, and (4) implementing adaptive management practices across scales. Our findings show that while there are many opportunities for scientific advancement, the current state of the sciences is sufficient to inform policy and management. Our proposed framework pro-vides a path forward for managing and protecting cold-water refuges using existing and new policies to protect coldwater organisms in the face of global change. behavioral thermoregulation, climate change adaptation, lotic ecosystem management, refugia, salmonids, temperature, thermal heterogeneity, thermal refugespublishedVersio

    A quasi-experimental test of an intervention to increase the use of thiazide-based treatment regimens for people with hypertension

    Get PDF
    BACKGROUND: Despite recent high-quality evidence for their cost-effectiveness, thiazides are underused for controlling hypertension. The goal of this study was to design and test a practice-based intervention aimed at increasing the use of thiazide-based antihypertensive regimens. METHODS: This quasi-experimental study was carried out in general medicine ambulatory practices of a large, academically-affiliated Veterans Affairs hospital. The intervention group consisted of the practitioners (13 staff and 215 trainees), nurses, and patients (3,502) of the teaching practice; non-randomized concurrent controls were the practitioners (31 providers) and patients (18,292) of the non-teaching practices. Design of the implementation intervention was based on Rogers' Diffusion of Innovations model. Over 10.5 months, intervention teams met weekly or biweekly and developed and disseminated informational materials among themselves and to trainees, patients, and administrators. These teams also reviewed summary electronic-medical-record data on thiazide use and blood pressure (BP) goal attainment. Outcome measures were the proportion of hypertensive patients prescribed a thiazide-based regimen, and the proportion of hypertensive patients attaining BP goals regardless of regimen. Thirty-three months of time-series data were available; statistical process control charts, change point analyses, and before-after analyses were used to estimate the intervention's effects. RESULTS: Baseline use of thiazides and rates of BP control were higher in the intervention group than controls. During the intervention, thiazide use and BP control increased in both groups, but changes occurred earlier in the intervention group, and primary change points were observed only in the intervention group. Overall, the pre-post intervention difference in proportion of patients prescribed thiazides was greater in intervention patients (0.091 vs. 0.058; p = 0.0092), as was the proportion achieving BP goals (0.092 vs. 0.044; p = 0.0005). At the end of the implementation period, 41.4% of intervention patients were prescribed thiazides vs. 30.6% of controls (p < 0.001); 51.6% of intervention patients had achieved BP goals vs. 44.3% of controls (p < 0.001). CONCLUSION: This multi-faceted intervention appears to have resulted in modest improvements in thiazide prescribing and BP control. The study also demonstrates the value of electronic medical records for implementation research, how Rogers' model can be used to design and launch an implementation strategy, and how all members of a clinical microsystem can be involved in an implementation effort

    Closing the gap between science and management of cold‐water refuges in rivers and streams

    Get PDF
    Human activities and climate change threaten coldwater organisms in freshwater ecosystems by causing rivers and streams to warm, increasing the intensity and frequency of warm temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches of relatively cool water that are used by coldwater organisms for thermal relief and short-term survival. Globally, cohesive management approaches are needed that consider interlinked physical, biological, and social factors of cold-water refuges. We review current understanding of cold-water refuges, identify gaps between science and management, and evaluate policies aimed at protecting thermally sensitive species. Existing policies include designating cold-water habitats, restricting fishing during warm periods, and implementing threshold temperature standards or guidelines. However, these policies are rare and uncoordinated across spatial scales and often do not consider input from Indigenous peoples. We propose that cold-water refuges be managed as distinct operational landscape units, which provide a social and ecological context that is relevant at the watershed scale. These operational landscape units provide the foundation for an integrated framework that links science and management by (1) mapping and characterizing cold-water refuges to prioritize management and conservation actions, (2) leveraging existing and new policies, (3) improving coordination across jurisdictions, and (4) implementing adaptive management practices across scales. Our findings show that while there are many opportunities for scientific advancement, the current state of the sciences is sufficient to inform policy and management. Our proposed framework provides a path forward for managing and protecting cold-water refuges using existing and new policies to protect coldwater organisms in the face of global change

    Somatic mutations affect key pathways in lung adenocarcinoma

    Full text link
    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well- classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers - including NF1, APC, RB1 and ATM - and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.National Human Genome Research InstituteWe thank A. Lash, M.F. Zakowski, M.G. Kris and V. Rusch for intellectual contributions, and many members of the Baylor Human Genome Sequencing Center, the Broad Institute of Harvard and MIT, and the Genome Center at Washington University for support. This work was funded by grants from the National Human Genome Research Institute to E.S.L., R.A.G. and R.K.W.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62885/1/nature07423.pd

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore