2,072 research outputs found
Vegetation structure and fire weather influence variation in burn severity and fuel consumption during peatland wildfires
Temperate peatland wildfires are of significant environmental concern but information on their environmental effects is lacking. We assessed variation in burn severity and fuel consumption within and between wildfires that burnt British moorlands in 2011 and 2012. We adapted the composite burn index (pCBI) to provide semi-quantitative estimates of burn severity. Pre- and post-fire surface (shrubs and graminoids) and ground (litter, moss, duff) fuel loads associated with large wildfires were assessed using destructive sampling and analysed using a generalised linear mixed model (GLMM). Consumption during wildfires was compared with published estimates of consumption during prescribed burns. Burn severity and fuel consumption were related to fire weather, assessed using the Canadian Fire Weather Index System (FWI System), and pre-fire vegetation type. pCBI varied 1.6 fold between, and up to 1.7 fold within, wildfires. pCBI was higher where moisture codes of the FWI System indicated drier fuels. Spatial variation in pre- and post-fire fuel load accounted for a substantial proportion of the variance in fuel loads. Average surface fuel consumption was a linear function of pre-fire fuel load. Average ground fuel combustion completeness could be predicted by the Buildup Index. Carbon release ranged between 0.36 and 1.00 kg C m−2. The flammability of ground fuel layers may explain the higher C release-rates seen for wildfires in comparison to prescribed burns. Drier moorland community types appear to be at greater risk of severe burns than blanket-bog communities
Response of a Model of CO Oxidation with CO Desorption and Diffusion to a Periodic External CO Pressure
We present a study of the dynamical behavior of a Ziff-Gulari-Barshad model
with CO desorption and lateral diffusion. Depending on the values of the
desorption and diffusion parameters, the system presents a discontinuous phase
transition between low and high CO coverage phases. We calculate several points
on the coexistence curve between these phases. Inclusion of the diffusion term
produces a significant increase in the CO_2 production rate. We further applied
a square-wave periodic pressure variation of the partial CO pressure with
parameters that can be tuned to modify the catalytic activity. Contrary to the
diffusion-free case, this driven system does not present a further enhancement
of the catalytic activity, beyond the increase induced by the diffusion under
constant CO pressure.Comment: 5 pages, RevTe
Analytic solutions and Singularity formation for the Peakon b--Family equations
Using the Abstract Cauchy-Kowalewski Theorem we prove that the -family
equation admits, locally in time, a unique analytic solution. Moreover, if the
initial data is real analytic and it belongs to with , and the
momentum density does not change sign, we prove that the
solution stays analytic globally in time, for . Using pseudospectral
numerical methods, we study, also, the singularity formation for the -family
equations with the singularity tracking method. This method allows us to follow
the process of the singularity formation in the complex plane as the
singularity approaches the real axis, estimating the rate of decay of the
Fourier spectrum
Exotic torus manifolds and equivariant smooth structures on quasitoric manifolds
In 2006 Masuda and Suh asked if two compact non-singular toric varieties
having isomorphic cohomology rings are homeomorphic. In the first part of this
paper we discuss this question for topological generalizations of toric
varieties, so-called torus manifolds. For example we show that there are
homotopy equivalent torus manifolds which are not homeomorphic. Moreover, we
characterize those groups which appear as the fundamental groups of locally
standard torus manifolds.
In the second part we give a classification of quasitoric manifolds and
certain six-dimensional torus manifolds up to equivariant diffeomorphism.
In the third part we enumerate the number of conjugacy classes of tori in the
diffeomorphism group of torus manifolds. For torus manifolds of dimension
greater than six there are always infinitely many conjugacy classes. We give
examples which show that this does not hold for six-dimensional torus
manifolds.Comment: 21 pages, 2 figures, results about quasitoric manifolds adde
Ground and excited states Gamow-Teller strength distributions of iron isotopes and associated capture rates for core-collapse simulations
This paper reports on the microscopic calculation of ground and excited
states Gamow-Teller (GT) strength distributions, both in the electron capture
and electron decay direction, for Fe. The associated electron and
positron capture rates for these isotopes of iron are also calculated in
stellar matter. These calculations were recently introduced and this paper is a
follow-up which discusses in detail the GT strength distributions and stellar
capture rates of key iron isotopes. The calculations are performed within the
framework of the proton-neutron quasiparticle random phase approximation
(pn-QRPA) theory. The pn-QRPA theory allows a microscopic
\textit{state-by-state} calculation of GT strength functions and stellar
capture rates which greatly increases the reliability of the results. For the
first time experimental deformation of nuclei are taken into account. In the
core of massive stars isotopes of iron, Fe, are considered to be
key players in decreasing the electron-to-baryon ratio () mainly via
electron capture on these nuclide. The structure of the presupernova star is
altered both by the changes in and the entropy of the core material.
Results are encouraging and are compared against measurements (where possible)
and other calculations. The calculated electron capture rates are in overall
good agreement with the shell model results. During the presupernova evolution
of massive stars, from oxygen shell burning stages till around end of
convective core silicon burning, the calculated electron capture rates on
Fe are around three times bigger than the corresponding shell model
rates. The calculated positron capture rates, however, are suppressed by two to
five orders of magnitude.Comment: 18 pages, 12 figures, 10 table
Comparative genomic mapping of uncharacterized canine retinal ESTs to identify novel candidate genes for hereditary retinal disorders
Purpose: To identify the genomic location of previously uncharacterized canine retina-expressed expressed sequence tags (ESTs), and thus identify potential candidate genes for heritable retinal disorders. Methods: A set of over 500 retinal canine ESTs were mapped onto the canine genome using the RHDF ₅₀₀₀₋₂ radiation hybrid (RH) panel, and the resulting map positions were compared to their respective localization in the CanFam2 assembly of the canine genome sequence. Results: Unique map positions could be assigned for 99% of the mapped clones, of which only 29% showed significant homology to known RefSeq sequences. A comparison between RH map and sequence assembly indicated some areas of discrepancy. Retinal expressed genes were not concentrated in particular areas of the canine genome, and also were located on the canine Y chromosome (CFAY). Several of the EST clones were located within areas of conserved synteny to human retinal disease loci. Conclusions: RH mapping of canine retinal ESTs provides insight into the location of potential candidate genes for hereditary retinal disorders, and, by comparison with the assembled canine genome sequence, highlights inconsistencies with the current assembly. Regions of conserved synteny between the canine and the human genomes allow this information to be extrapolated to identify potential positional candidate genes for mapped human retinal disorders. Furthermore, these ESTs can help identify novel or uncharacterized genes of significance for better understanding of retinal morphology, physiology, and pathology.10 page(s
A Model for Ferromagnetic Nanograins with Discrete Electronic States
We propose a simple phenomenological model for an ultrasmall ferromagnetic
grain, formulated in terms of the grain's discrete energy levels. We compare
the model's predictions with recent measurements of the discrete tunneling
spectrum through such a grain. The model can qualitatively account for the
observed features if we assume (i) that the anisotropy energy varies among
different eigenstates of one grain, and (ii) that nonequilibrium spin
accumulation occurs.Comment: 4 pages, 2 figure
Recommended from our members
Risk Owners & Risk Managers: Dealing with the complexity of feeding children with neurodevelopmental disability
This paper illustrates negotiations around risk between lay people and clinicians in relation to gastrostomy interventions for disabled children. These negotiations centre on differing interpretations of what constitutes risk in relation to the safety of oral feeding and a child's need for a feeding tube between parents, carers and clinical specialties. Drawing on Heyman's distinction between risk managers and risk owners, we show that not only do clinicians act as risk managers and parents and carers as risk owners, but that these distinctions often become blurred either because of the shifting dynamics of relations of care or because of the specificity of clinical practice. Parents become risk managers in relation to carers' roles, while clinicians become risk owners in relation to particular procedures which define their practice. This has implications for lay and expert interactions as well as professional accountability for those caring for children with complex medical conditions. Although not an empirical article, we draw on empirical work in the UK. We analyse both parental and professional constructions of risk based on observations of co-ordinating a clinical trial designed to evaluate the effectiveness of gastrostomy surgery. We also examine the diverse value systems used by different groups of professionals and lay carers which inform judgements about risk and feeding. We conclude by arguing that issues of risk in contemporary health care are not just examples of ‘manufactured uncertainty’ or of ‘negotiated power’ but constitute a dialectical relationship which breaks down the essentialist dualism of lay and professional constructions of risk
- …