This paper reports on the microscopic calculation of ground and excited
states Gamow-Teller (GT) strength distributions, both in the electron capture
and electron decay direction, for 54,55,56Fe. The associated electron and
positron capture rates for these isotopes of iron are also calculated in
stellar matter. These calculations were recently introduced and this paper is a
follow-up which discusses in detail the GT strength distributions and stellar
capture rates of key iron isotopes. The calculations are performed within the
framework of the proton-neutron quasiparticle random phase approximation
(pn-QRPA) theory. The pn-QRPA theory allows a microscopic
\textit{state-by-state} calculation of GT strength functions and stellar
capture rates which greatly increases the reliability of the results. For the
first time experimental deformation of nuclei are taken into account. In the
core of massive stars isotopes of iron, 54,55,56Fe, are considered to be
key players in decreasing the electron-to-baryon ratio (Ye) mainly via
electron capture on these nuclide. The structure of the presupernova star is
altered both by the changes in Ye and the entropy of the core material.
Results are encouraging and are compared against measurements (where possible)
and other calculations. The calculated electron capture rates are in overall
good agreement with the shell model results. During the presupernova evolution
of massive stars, from oxygen shell burning stages till around end of
convective core silicon burning, the calculated electron capture rates on
54Fe are around three times bigger than the corresponding shell model
rates. The calculated positron capture rates, however, are suppressed by two to
five orders of magnitude.Comment: 18 pages, 12 figures, 10 table