In 2006 Masuda and Suh asked if two compact non-singular toric varieties
having isomorphic cohomology rings are homeomorphic. In the first part of this
paper we discuss this question for topological generalizations of toric
varieties, so-called torus manifolds. For example we show that there are
homotopy equivalent torus manifolds which are not homeomorphic. Moreover, we
characterize those groups which appear as the fundamental groups of locally
standard torus manifolds.
In the second part we give a classification of quasitoric manifolds and
certain six-dimensional torus manifolds up to equivariant diffeomorphism.
In the third part we enumerate the number of conjugacy classes of tori in the
diffeomorphism group of torus manifolds. For torus manifolds of dimension
greater than six there are always infinitely many conjugacy classes. We give
examples which show that this does not hold for six-dimensional torus
manifolds.Comment: 21 pages, 2 figures, results about quasitoric manifolds adde