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CHAPTER3 

Multigrid Approaches to the 
Euler Equations 

P. W. HEMKER AND G. M. JOHNSON 

3.1. Introduction. In this chapter we give a survey of the present state 
of the art for multigrid solution of the Euler equations for inviscid 
compressible flow. This is an example of a branch of multi grid research in 
which a thorough mathematical basis is still missing. What does exist to 
guide applications is an abundance of heuristic arguments and analogues 
from areas with better theoretical foundations, yet there is a scarcity of solid 
theory to account for the convergence speed and efficiency shown in 
practice. Such theory as there is lags well behind both practical development 
and the excellent results that have already been obtained with multigrid 
Euler solvers applied to large scale problems. 

We chose to restrict our discussion in this chapter to the Euler equations 
because there are a few visible lines of development that can easily be treated 
within the scope of this chapter. Much interesting work has also been 
done in the general field of compressible and incompressible Navier-Stokes 
equations (cf. the pioneering work by Brandt [92], [95], [99], [105]), but the 
state of the art in this area is changing too rapidly to be suitable for 
discussion here. We refer the reader instead to the literature for other fluid 
flow applications. In particular, the KWIC index to the Multigrid Bibliog
raphy included in Appendix 2 of this book lists a collection of papers on the 
compressible and incompressible Navier equations, potential flow, and the 
Stokes equations. 

Because even the multigrid Euler-solver discipline is continually chang
ing, in this chapter we adopt the perspective of an overview rather than one 
of prescription and detailed guidance. We hope that this overview and the 
cited references will prepare the reader for further studies in this advancing 
field. 

The efficient solution of flow problems was one of the early aims in the 
applications of multigrid (MG) methods [86]. However, in recent years most 
of the progress in the development of MG has been made in the field of 
elliptic partial differential equations and other fields where a solid mathe
matical theory exists (e.g., integral equations). For the inherently more 
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complex equations that describe flow problems, the theoretical development 
of MG did not proceed at the same pace. Early numerical work was done by 
Brandt [99], [105] and South and Brandt [524], where, for example, the 
Stokes equations and the incompressible and compressible Navier-Stokes 
equations were considered. 

On the other hand, triggered by practical interest from the engineering 
sciences, several attempts have been made to apply MG ideas to improving 
the efficiency of flow computations. If the flow is assumed to be irrotational, 
then it can best be described by the potential equation, which-in the 
interesting case of transonic flow-is of mixed hyperbolic and elliptic type. 
By the use of MG, substantial improvements were made in the procedures 
for solving these equations [70], [123], [297], [382], [ 439], [524]. When the 
assumption of irrotational flow is dropped, an exact description of inviscid 
flow is given by the Euler equations. When the physical effects of viscosity 
and heat conduction are also included, these equations extend to the 
Navier-Stokes equations. Models of turbulence can also be included in the 
Navier-Stokes equations. 

In this chapter we will treat several multiple grid approaches that are used 
for the solution of the equations of compressible flow. We restrict ourselves 
to problems in 2 space dimensions. Almost all techniques discussed here can 
be applied in 3-D as well, but the burden of 3-D notation makes the 
description unattractive. Also, in practice, most codes are written for 2-D 
problems because the complexity of 3-D computations and the computa
tional requirements for their implementation are at the limit of present-day 
computer capabilities. The advent of more powerful computers will cer
tainly change this situation in the near future. 

Although practical problems that arise in the aircraft and turbomachinery 
industries are often described by the compressible Navier-Stokes equations, 
we shall consider mainly the Euler equations of inviscid flow. The reason for 
this is the assumption that a good method for the solution of the Euler 
equations may be extended to those situations where viscosity plays a 
significant role. 

In those cases where the solution of the Euler equations can be used as a 
first approximation to the solution of the full Navier-Stokes equations, it 
may be a convenient approach to compute (an approximation to) this Euler 
flow first. This approximation can then be corrected for viscous effects. 
Most simply, this is done by a defect correction approach [66], where the 
solution of the Navier-Stokes equations is found by an iterative process in 
which only Euler-type equations are (approximately) solved and the heat 
conduction and viscous Navier-Stokes terms are taken care of by adding the 
corresponding corrections as forcing terms. In practice, a simple method to 
realize such an iterative process for. the solution of the Navier-Stokes 
equation is to neglect the extra Navier-Stokes terms at particular stages of 
the solution process. 
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3.1.1. The equations. The 2-D Navier-Stokes equations, describing 
the physical laws of conservation of mass, momentum and energy, can be 
written in conservation form as 

(l.la) 

where 

(1.lb) 

and 

F(q) = f(q) - Re- 1 r(q), G(q) = g(q) - Re- 1 s(q), 

( 
p ) ( pu ) ( pv ) pu pu2 +p pvu 

q = pv ' f = puv ' g = pv 2 + p ' 

pe puH pvH 

Here p, u, v, e and p, respectively, represent density, velocity in x- and 
y-direction, specific energy and pressure; H = e + p Ip is the specific 
enthalpy. The pressure is obtained from the equation of state, which for a 
perfect gas reads 

p = (y- l)p(e -!(u2 + v2)); 

y is the ratio of specific heats. q(t, x, y) describes the state of the gas as a 
function of time and space and f and g are the convective fluxes in the x
and y-direction, respectively. Re and Pr denote the Reynolds and Prandtl 
numbers; thermal conductivity is given by K; c = \!yp/ p is the local speed of 
sound; and 

'l:xx =(A.+ 2µ)ux + AVy, T:xy = µ(uy + Vx), 'l'yy =(A.+ 2µ)vy + AUx, 

where A. and µ are viscosity coefficients. Stokes assumption of zero bulk 
viscosity may reduce the number of coefficients by one: 3A. + 2µ = 0. 

We denote the open domain of definition of (1.1) by Q*. 
The Euler equations are obtained from (1.la) by neglecting viscous and 
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heat conduction effects: 

(1.lc) F(q) = f(q), G(q)=g(q). 

The time-dependent Euler equations form a hyperbolic system: written in 
the quasi-linear form 

the matrix 

(1.2) 

has real eigenvalues for all directions (k 1, k2). These eigenvalues are 
(k 1u + k2v) ± c and (k 1u + k 2v) (a double eigenvalue). The sign of the 
eigenvalues determines the direction in which the information about the 
solution is carried along the line (k1> k 2 ) as time develops (i.e., it 
determines the direction of flow of characteristic information). It locates the 
direction of the domain of dependence. 

It is well known that, because of the nonlinearity, solutions of the Euler 
equations may develop discontinuities, even if the initial flow (t = t0) is 
smooth. To allow discontinuous solutions, (1.1) is rewritten in its integral 
form 

(1.3) ~ f l q dx dy + i (f · nx + g · ny) ds = 0 for all Q c Q *; 
at Q aa 

aQ is the boundary of Q and (nX> ny) is the outward normal vector at the 
wall aQ. 

The form (1.3) of equation (1.1) shows clearly the character of the system 
of conservation laws: the increase of q in Q can be caused only by the inflow 
of q over ao. In symbolic form we write (1.3) as 

(1.4) 

The solution of the weak form (1.3) of (l.la, c) is known to be 
nonunique, and a physically realistic solution (which is the limit of a flow 
with vanishing viscosity) is known to satisfy the additional entropy condition 
(cf. [Lal], [La2]). The entropy condition implies that characteristics do not 
emerge at a discontinuity in the flow. 

The steady state equations are obtained by the assumption oq/ at = 0. 
Guided by the defect correction principle and knowing how the viscous 
effects change the governing equations, for the Navier-Stokes equations 
with large Reynolds number we can concentrate on the solution methods for 
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the stationary Euler equations 

(1.5) N(q) = 0. 
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3.1.2. The discretizations. For the discretization of (1.1) or (1.3), two 
different approaches can be taken. First, the time and space discretizations 
can be made at once. This leads, for example, to discretization schemes of 
Lax-Wendroff type. An initial state of the fluid qz,,i, defined on a discrete 
grid, is advanced over one time step. Using a second order approximation in 
time yields 

(1.6) 

With the equation (l.la, c), we arrive at 

q}p+ 1l = q};"l - lit(fx + gy)ij + ~(~t)2 {[A(fx + gy)]x + [B(fx + gy)]y L 
l} 

where A and Bare defined by (1.2). Using various difference approximations 
of the bracketed terms in the right-hand side, we may obtain different 
Lax-Wendroff type discretizations. 

This type of discretization is usually made on a rectangular grid. If the 
domain Q* is not rectangular, a 1-1-mapping (x, y)~~(;, 11) between the 
physical domain and a rectangular computational domain can be con
structed. Then the differential equation and the boundary conditions are 
reformulated on this computational domain. 

A property of most of these Lax-Wendroff discretizations is that, when 
by time stepping a stationary state is obtained such that q?n+I) = qzn)1 the 
discrete stationary state still depends on lit. This is caused by the fact that 
the discrete term with (M)2 in (1.6) in general does not vanish. 

A second approach is to distinguish clearly between the time and the 
space discretization by the method of lines. First, a space discretization is 
made for the partial differential equation (1.4) by which it is reduced to the 
large system of ordinary differential equations 

a 
(1.7) at qh = Nh(qh). 

Now, to find an approximation of the time-dependent solution of (1.4), any 
method can be used for the integration of this system of ordinary differential 
equations. The solution of the steady state can be computed by solving (1.7) 
until the transients have died out. Alternatively, we can avoid the ordinary 
differential equations (1. 7) and solve the nonlinear system 

(1.8) Nh(qh) = 0 

by other (more direct) means. In both cases (1.7) and (1.8), we find a steady 
approximate solution qh independent of the choice of a time step. 
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For the construction of the semi-discrete system (1. 7) or (1.8) on a 
nonrectangular domain Q*, a mapping (x, y)--(;, 11) can again be 
introduced and finite difference approximations (of arbitrarily high order) 
can be used to construct a space discretization of the transformed steady 
equation 

[y11 F(q) -x11 G(q)]s + [-ysF(q) +xsG(q)]71 = 0. 

Another way to construct system (1.7) on a nonrectangular grid is by a finite 
volume technique. Here, the starting point for the discretization is (1.3). 
Without an a priori transformation, the domain Q* is divided into a set of 
disjoint quadrilateral cells Qii· The discrete representation qh of q is given 
by the values %• the (mean) values of q in the cell Qii· Using different 
approximations for the computation of fluxes between the cells Qii• we 
obtain various finite volume discretizations. We can easily obtain a 
conservative scheme by computing a unique approximation for each flux 
over the boundary between two neighboring cells. 

In order to define a proper sequence of discretizations as h - 0 for a 
nonrectangular grid, a formal relation between the vertices of cells '2;i and a 
regular grid can be given, again by a mapping (x, y)--(;, 1J). If this 
mapping is smooth enough, it can be proved that, for refinements h- 0 
corresponding to regular refinements in ( ;, 1J), space discretizations up to 
second order can be obtained. An advantage of the finite volume technique 
is that the untransformed equations can be used, even for a complex region. 
Boundary condition information is also usually simpler for finite volume 
methods. 

With the finite volume technique, both central difference and upwind type 
finite volume schemes are used. They differ by the computation of the flux 
between neighboring cells '2;i: 

(1) For a central difference type, the flux over a cell wall r LR between 
two cells with states qL and qR is computed as !f*(qL) + !f*(qR), where 
f* =kif+ k 2g is the flux normal to r LR· On a Cartesian grid this scheme 
reduces to the usual central difference scheme. In order to stabilize this 
scheme, and to prevent the uncoupling of odd and even cells in the grid, it is 
necessary to supplement the scheme with some kind of artificial dissipation 
(artificial viscosity). 

(2) For upwind difference type discretizations, numerical flux functions 
f*(qL, qR) are introduced to compute the flux over r LR· Several functions 
f* are possible. They solve approximately the Riemann problem of gas 
dynamics: they approximate the flux between two (initially) uniform states 
qL and qR. Approximate Riemann solvers have been proposed by Steger 
and Warming [Stl], van Leer [Val], Roe [Rol], and Osher [Osl], [Os2]. A 
description of these upwind schemes· and their properties can be found in 
the cited literature. For a consistent scheme, f*(q, q) = f*(q), i.e., the 
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numerical flux function with equal arguments conforms with the genuine 
flux function in (l.lc). All these upwind flux functions are purely one-sided 
if all character~stics poi_nt i~ the same direction, i.e., f*(qL, qR) = f*(qL) if 
the flow of all mformatton is from left to right. 

3.1.3. The multiple grid methods. When a multiple grid technique is 
used to solve the system of nonlinear (differential) equations (1.7) or (1.8), 
we assume the existence of a nested set of grids. Usually this nesting is such 
that a set of 2 x 2 cells in a fine mesh forms a single cell in the next coarser 
one. (No staggered grids!) The coarser grids are used to effect the 
acceleration of a basic iterative (time marching or relaxation) procedure on 
the finest grid. 

Slightly generalizing equations (1.7) and (1.8) to 

(1. 9) 

and 

(l.10) 

where rh denotes a possible correction or forcing term, we can write the 
basic iterative procedure as 

(1.11) 

Generally, for a nonlinear equation this will be a nonlinear operation (e.g., 
a nonlinear Gauss-Seidel relaxation scheme). 

The usual coarse grid acceleration algorithm is as follows: with an 
approximation q~k) on the finest mesh, and some approximation q~~> on the 
next coarser one (e.g., qt3i = I~hq'<ici), first an approximate solution qf?l is 
found for the coarse grid problem 

(1.12) N2h(q2h) = N2h(qz8i) - /f'(Nh(q~k,) - rh), 

and then the value q~k) is updated by 

(l.13) h - h Jh(2h 2h) 
q(k+l) - q(k) + 2h q(l) - q(O) • 

Notice that fl.h is a restriction operator similar to I~; the difference is that 
I~ works on approximate solutions qh (the state of the flow), whereas lt,h 
works on residuals (rates of change of the flow). The difference is not only 
formal: in the simplest case /~ takes the mean value of states in a set of 
cells, but 1~ performs a summation of rates of change over a set of cells. 

The combination of (l.12) and (1.13) is a coarse grid correction (CGC). 
The solution q2h of (1.12) can be approximated, e.g., by an (accelerated) 
iteration process on the 2h-grid again. As for linear problems, by the 
recursive application of this idea we can form V -cycles or µ-cycles. 
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We will see in §3.2 that the coarser grids sometimes play a role in the 
acceleration process that is different than the one we have just described 
[316], [474]. 

The nonlinear multigrid cycle (also called the FAS-cycle) 

qh <E:-FASZ(qh, rh) 

for the solution of (1.10) now consists of the following steps: 

Step 0: Start with an approximate solution qh. 
Step 1: Improve qh by application of v 1 nonlinear (pre-) relaxation 

iterations (1.11) to Nh(qh) = rh. 
Step 2: If the present grid is the coarsest, go to Step 4. Otherwise 

improve qh by application of a coarse grid correction, where the 
approximation of (1.12) is effected by µ FAS-cycles to this 
coarser grid problem; that is, compute 

r2h <E:-N2h(q~Si)- i7,h(Nh(qh) _ rh), 

and perform µ times 

q2h <E:- FAS~h(q2h, r2h). 

Step 3: qh <E:-qh + nh(q2h - q'f{;l)· 
Step 4: Improve qh by application of v2 nonlinear (post-) relaxation 

iterations to Nh(qh) = rh. 

Again, the case with µ = 1 is called a V-cycle; µ == 2 yields a W-cycle. A 
V-cycle with v1 + v2 = 1 is called a sawtooth cycle. 

3.2. Methods based on Lax-Wendrofftype time stepping. Ni [428] was 
among the first to apply an MG acceleration to the (isenthalpic) Euler 
equations. He uses the following time stepping procedure as a basic 
iteration. Starting with an initial state qzn)• where the values q)pl are given at 
the grid points, he first computes the following quantities by means of a 
control volume centered integration method with fluxes interpolated from 
corner values: 

1 Lit 
flq;+112,j+112 = - 2 flx [(F;+1,j- F;) + (F;+1,j+1 - Fi,j+ 1)] 

(2.1) 1 Llt 
-2 Lly [(G;,j+1 - G;,j) + (G;+1,1 - G;+1,1+1)], 

F;,i = F( qip>), etc. 
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These increments are .then distributed over the mesh points using direction
weighted means (cell increments are distributed over mesh point values): 

(2.2) 

1 "' [ .6.t .6.q;j = 4- L.,, L I - k-;-A;+k/2,j+l/2 
1=±1 k=±I uX 

q \n+l) = q\n) + Aq .. 
lj lj U I}' 

- l :; B i+k12.1+112] D..q i+kl2,J+112, 

By way of the Jacobian matrices A and B, this distribution formula has an 
upwinding effect, but for transonic or supersonic cases an artificial damping 
is still necessary. 

Symbolically, this time stepping process (2.1 )-(2.2) is described as 
follows: 
(2.3a) compute .6.q~elb 

with cell values .6.q;+112./+112 = -.6.t (J an,.,'1.i+w (f ·nx + g ·ny) ds)/(.6.x · .6.y); 

(2.3b) 

The operator Dh is the distribution operator that transfers the cell centered 
corrections to the grid points by means of (2.2). 

The coarse grid acceleration as introduced in [428] by Ni deviates from 
the canonical coarse grid scheme (1.12), (1.13). In (428] the coarse grid 
correction is obtained by first computing corrections at coarser cells, .6.q~~11 . 
This can be done by restriction of .6.qh to the 2h-grid. Then the corrections 
.6.q~~11 are distributed to the coarser meshpoints as in (2.2), and the coarse 
grid correction is interpolated to the fine grid. Thus, here the coarse grid 
correction reads 

(2.4a) 

(2.4b) 

where l~h is a (bi-) linear interpolation operator. Since the coarse grid 
corrections are based on fine grid residuals, it is obvious that the possible 
convergence to a steady state yields a solution of the system (1.8). 

In the same way the correction procedure can be repeated on progres
sively coarser grids. Therefore, in (2.4), 2h should be replaced by 2kh. We 
notice that the corrections on the different levels may be made independ
ently of each other. This makes it possible to compute all coarse grid 
corrections, k = 1, · · · , m, in parallel and to form the correction 

at once [541]. When optimal use of modern multi-processor computers is 
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made, it is also possible to perform both computations (2.3a) and (2.4) in 
parallel [320], [541]. 

We see that it is still possible to form different variants of the Ni-type 
multigrid Euler solver. First, any other Lax-Wendroff type time-marching 
procedure can be used for (2.3a). In [134), [314], [318] Johnson applies the 
popular Maccormack scheme. Further, in (2.4a) various restrictions, I'f/', 
can be used. Equation (2.4a) transfers the values of the fine grid corrections 
to a single value for each control volume in the coarser grid. Injection of the 
correction to the corresponding point of the coarse grid cell is often used 
(316], but weighted averages are also an obvious choice. 

Heuristically, the coarse grid corrections in (2 .4) have an accelerating 
effect because they may move disturbances of the steady state over the 
distance of many mesh cells in one time step. Apparently, the Lax
Wendroff schemes used in combination with this coarse grid correction must 
be sufficiently dissipative to reduce the high frequency disturbances present 
in the initial approximation or introduced by linear interpolation. One way 
to do this is to make a careful choice of !:l.t. Until now, no complete 
mathematical theory has been developed to explain or quantify the amount 
of acceleration clearly found in the use of this approach. 

As an alternative to (2.2), where Jacobians are used to form the 
correction, Johnson [315] introduced a correction that is based on ex
trapolation (in time) of the computed fluxes. 

3.3. Methods based on semidiscretization and time stepping. When 
only the solution of the steady state is to be computed, the time-accurate 
integration of the system of ordinary differential equations is wasteful. The 
convergence of (1.4) to steady state is slow. However, there may be several 
reasons to prefer time stepping methods, such as the desire to have a 
procedure that solves transient as well as steady state problems, coding 
convenience, or the restrictions imposed by the optimal use of vector 
computers. When no time accuracy is desired, many devices are known to 
accelerate the integration process (cf. [305]). For the solution of the Euler 
equations, these devices include: (i) local time stepping, which means that 
the step size in the integration process may differ over different parts of the 
domain Q*; (ii) enthalpy damping, where a priori knowledge about the 
behavior of the enthalpy over Q* is used (e.g., H constant over Q*); (iii) 
residual smoothing; and (iv) implicit residual averaging, which uses the fact 
that instability effects appear first for high frequencies, so that larger time 
steps are possible when the residual is smooth. 

For all explicit integration methods, stability requirements set a limit on 
the size of the possible time steps (CFL limits). Implicit integration 
procedures can be unconditionally stable, but they require the solution of a 
nonlinear system at each individual time step. 
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An important code based on a time stepping method has been developed 
by Jameson, Schmidt and Turkel [305]. They use an explicit time stepping 
method of Runge-Kutta type. This multistage time stepping procedure is a 
specially adapted Runge-Kutta method, where the hyperbolic (convective) 
and the parabolic (dissipative) parts of Nh(qh) are treated separately. The 
Runge-Kutta coefficients in the k-stage Runge-Kutta schemes (k = 3, 4) 
are selected not only for their large stability bounds, but also with the aim 
of improving the damping of the high frequency modes. In the k stages of 
the Runge-Kutta process, the updating of the dissipative part is frozen at 
the first stage. This saves a substantial part of the computational effort. 

The multigrid scheme used by Jameson [300] is an FAS sawtooth cycle 
with v1 = l. The restriction I'f/'(ff,h) is defined by volume-weighted averaging 
of the states (summation of changes of states, respectively). The prolonga
tion It, is defined by bilinear interpolation. The basic smoothing procedure 
is the "multistage time stepping scheme." On the coarser grids the stability 
bounds for the time step, which are O(h), allow larger time steps. On each 
grid the time step is varied locally to yield a fixed Courant number, and the 
same Courant number is used on all grids, so that progressively larger time 
steps are used after each transfer to a coarser grid. As for Ni's method, the 
reasoning is that disturbances from the steady state will be more rapidly 
expelled from the domain Q* by the larger time steps. The interpolation of 
corrections back to the fine grid introduces high frequency errors, which 
cannot be rapidly expelled. These errors should be locally damped. Hence, 
to obtain a fast rate of convergence, the time stepping process should 
rapidly damp the high frequency errors. 

In [311] Jespersen announced an interesting theorem on the use of the 
MG process in combination with a time stepping procedure. This theorem 
asserts the following. Let Ih (resp. fh) be defined as a restriction operator 
from the continuous state space (resp. space of rates of change) to its 
discrete equivalent" on Q\ and let Ih be a prolongation operator that 
interpolates states on Qh to states on Q. Let Nh(qh) = 0 be a space 
discretization of N(q) = 0 which is consistent, i.e., 

Nh(Ih(q)) - fhN(q) = O(h), 

and let the time stepping procedure be consistent in time, i.e., 

q~n+1i = qtni + At<nJ[Nh(q~ni)- rh] + O((At<ni)2). 

If we consider the sawtooth algorithm, with v1 = 1, v2 = 0, µ = 1, and if Ih 
and Jh satisfy an approximation property (i.e., for a smooth function q the 
prolongation and restriction in the state space are such that IhF'q - q = 
O(h)), then the MG algorithm on m grids is a consistent, first order in time, 
discretization of (1.4) with time step Attot = :Ei= 1, ... , m Ati. 

In a sense this theorem formalizes the heuristic reasoning that on coarser 
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grids the deviations from steady state can be expelled faster by the use of 
larger time steps. This may suggest that more, say v > 1, steps on the 
coarser grids would further improve the convergence. However, the 
theorem addresses consistency; stability is not considered. Hence, in the 
same paper [311] Jespersen shows by an example that convergence is lost 
when a large number of relaxations is made on the coarse grid. In fact, a 
strong stability condition of the form /1t I~ s 0( v- 1) seems to appear. 

3.4. Fully implicit methods. Most methods considered so far are based 
on the concept of integrating the equations (1.4) in time until a steady state 
is reached. If we are only interested in a possible solution of the steady state 
equation (1.5) and assume that this solution is unique, we may disregard the 
time-dependence completely. Further, assuming that a suitable space 
discretization takes into account the proper directions of dependence in Q*, 
we can restrict ourselves simply to the solution of the nonlinear system (1.8) 
or 

(1.10) 

Also, if the time-dependent system (1.9) is solved by means of an implicit 
time stepping method in order to circumvent the stability bounds on !it, we 
have to solve systems (1.10) at each time step. Using these implicit solution 
methods and giving up time accuracy for (1.10) means that there is little or 
no difference between these time stepping procedures and (nonlinear) 
relaxation methods for (1.10). 

If we start with the nonlinear system (1.10), two direct MG approaches 
can be used. We can either apply the nonlinear multiple grid algorithm 
(FAS) directly to the system (1.10), or we may apply linearization 
(Newton's method) and use the linear version of multiple grid (CS) for the 
solution of the resulting linear systems. Jespersen (310] gives an extensive 
recital of the (dis)advantages of both approaches. Both have been used with 
success for the Euler equations. 

Linearization and CS have been used by Jespersen [309] and Mulder 
[423]; the nonlinear FAS procedure is used by Steger [528], Jespersen [309], 
and Hemker and Spekreijse [274], [275]. 

In all of these papers upwind discretizations have been used. In (309], 
[528] the Steger-Warming scheme is used; [423] uses the differentiable van 
Leer flux splitting method; [274], [275] use Osher's flux difference splitting. 
In [150] Dick also considers Roe's flux difference splitting for the 1-D Euler 
equations. 

When Newton's method is applied for linearization, it may be difficult to 
start in the domain of contraction of the iteration. Therefore, Mulder [423] 
introduces the so-called Switched Evolution Relaxation (SER) scheme, 
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which is a chimera of a forward Euler time stepping and a Newton method: 

(4.1) [2_ I_~ Nh( h )] ( h h ) _ h( h ) ~t oq q(n) q(n+I) - q(n) - N q(n) . 

For !lt- 0, this gives the simple time stepping procedure; for M- oo, (3.1) 
is equivalent to Newton's method. In the actual computation ~t varies, 
depending on the size of the residual, such that (3.1) is initially a time 
stepping procedure and becomes Newton's method in the final stages of the 
solution process. 

In an FAS procedure, a natural way to obtain an initial estimate is of 
course to use full multigrid (FMG) (97]. The initial estimate is obtained by 
interpolation from the approximate solution on the coarser grid(s). For 
many problems this process gives very good results, even if one starts with 
rough approximations on every coarse grid. 

3.4.1. A nested sequence of Galerkin discretizations. When (1.3) is 
discretized by a finite volume method, and if a conservative first order 
upwind (or a central difference) discretization is used as described in §3.1, it 
can be shown (275] that with a particularly simple restriction n/' and 
prolongation nh, the coarse discrete operator N2h is a Galerkin approxima
tion to the fine grid discretization Nh. With I~h the piecewise constant 
interpolation over cells, and nh the summation of the residual over fine 
mesh cells to form a residual on the corresponding coarse cell, the following 
relation holds: 

(4.2) 

This formula has an interesting implication for a coarse grid correction that 
is constructed by means of these operators. If the coarse grid correction 
(1.12), (1.13) transforms the approximation qh into qh, the residual of it 
satisfies 

For a smooth operator Nh, this implies 

This means that the restriction of the residual mainly contains high 
frequency components. As is the case with common elliptic problems, it is 
the task of the relaxation method to efficiently damp these highly oscillating 
residuals. 
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3.4.2. Relaxation methods. Clearly, whether a sequence of Galerkin 
approximations is used or not, the important feature of a relaxation method 
in a multiple grid context (both CS and FAS) is its capability to damp the 
high frequency components in the error (or in the residual). Therefore, 
the difference scheme should be sufficiently dissipative as first order upwind 
schemes usually are. An advantage of these schemes over central differences 
is that this numerical dissipation is well defined and independent of an 
artificial parameter for the added dissipation necessary for the central 
difference schemes. The lack of differentiability of the numerical flux 
function may create a problem, but some differentiable flux functions are 
now available [528], [Osl], [Os2], [Val]. 

Both in the linearized (CS) and in the nonlinear (FAS) application, 
well-known and simple relaxation procedures such as Gauss-Seidel (GS), 
symmetric Gauss-Seidel (SGS) and line Gauss-Seidel (LGS) are reported 
to work well when applied to the discrete Euler equations. (All of these 
relaxation methods are used in their "collective" version, i.e., the 3 or 4 
variables corresponding to a single point or cell are relaxed simultaneously.) 
The smoothing behavior of these relaxations can be analyzed by local mode 
analysis. Here we should notice that the smoothing factor, as used for 
common elliptic problems, has no significant meaning for the Euler 
equation because we have to take into account characteristic (unstable) 
modes. A local mode analysis should follow more along the lines used for 
singularly perturbed elliptic problems (cf. e.g. [328]). Jespersen [309] has 
published some results in this regard. He shows that for a subsonic and 
supersonic case, SGS has a reasonably good smoothing behavior when 
applied to a first order scheme. Of course, the nonsymmetric GS relaxation 
is only effective if the direction of the relaxation sufficiently conforms with 
the direction of the characteristics. If we study plots of reduction factors of 
Fourier components (spectral radii, or norms for the error or residual 
amplification operator), e.g., when SGS is applied to the Euler equations, 
we see that two SGS sweeps are usually sufficient for a significant reduction 
of the high frequ~ncies (Hemker, unpublished results). For second order 
schemes the smoothing rates are not satisfactory. 

Van Leer and Mulder published a study (Va2] where several relaxation 
schemes (GS, LGS, ZEBRA, point Jacobi, line Jacobi, ADI, AF) were 
compared when applied to the linearized isenthalpic Euler equations. 

3.4.3. Higher order schemes. When both first and second order 
upwind schemes are studied, the best MG performance is found for the first 
order discretizations. This can be explained by the fact that first order 
upwind schemes are more dissipative and hence more able to damp high 
frequencies. As first order schemes may not be accurate enough for 
practical computations and, moreover, have the unpleasant property of 
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TABLE 3.1 
Fully implicit multiple grid approaches. 

Discretization 
scheme MG Relaxation 

Steger Steger-Warming FAS AF 
(1981) Finite differences 

Jespersen Steger-Warming FAS/CS SGS, GS 
(1983) Finite differences 

Mulder van Leer CS SGS 
(1984) Finite differences 

Hemker and Osher FAS SGS, Damped Jacobi 
Spekreijse Finite volumes Nested Galerkin 
(1985) 

smearing out skew discontinuities, second order schemes are highly 
desirable. 

Beside the possibility of applying the MG acceleration directly to the 
second order scheme-with the unwanted effect of slowing the convergence 
rate-another possibility exists. Starting with a first approximation, we can 
improve the accuracy by the defect correction iteration (66], [271], [525] 

(4.4) N~(qfn+l)) = N~(qfn)) - N~(qfn))• 

Here N~, p = l, 2, denotes the pth order discretization. A theorem [225] 
has shown that for smooth solutions a single correction step (3.4) is 
sufficient to obtain the higher order of accuracy. Also, for solutions with 
discontinuities (where the formal order of convergence has no practical 
meaning), it is shown in [271) that one or a few steps (3.4) improve the 
accuracy of the solution significantly. 

In Table 3.1 we summarize the several attempts to solve the steady Euler 
equations by an MG method with implicit relaxation. It is our opinion that 
the recent methods of this class are the most robust and efficient ones 
for solving the steady Euler equations. The development in the last few 
years has led to a significant improvement of the algorithms. However, the 
fully implicit methods have a rather complex structure and are not directly 
suited for vector computers. Furthermore, at the moment there is much less 
practical experience with these methods than, e.g., with Jameson's 
multistage time stepping procedure or the commonly used Beam-Warming 
(Bel] algorithm. 
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