579 research outputs found
Temporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades
We performed two litter decomposition experiments using nearly-senesced red mangrove (Rhizophora mangle L.) leaves collected from an Everglades dwarf mangrove wetland to understand the short-term (3 weeks) and long-term (1 year) changes in mass, as well as C-, N-, and P-content of decomposing leaf litter. We expected that leaves decomposing in this oligotrophic environment would be short-term sources of C, N, and P, but potential long-term sinks for N and P. In May 1998, we conducted a 3-week leaching experiment, incubating fresh, individual leaves in seawater for up to 21 days. From May 1997 to May 1998, leaf litter in mesh bags decomposed on the forest floor at two dwarf mangrove sites. Leaching accounted for about 33% loss of dry mass from R. mangle leaves after 3 weeks. Leaching losses were rapid, peaking by day 2, and large, with leachate concentrations of total organic carbon (TOC) and total phosphorus (TP) increasing by more than an order of magnitude after 3 weeks. Mean leaf C:N increased from 105 to 115 and N:P increased from a mean of 74 to 95 after 21 days, reflecting the relatively large leaching losses of N and P. Loss of mass in the litterbags leveled off after 4 months, with roughly 60%dry mass remaining (DMR) after nearly 1 year of decomposition. The mass of carbon in each litterbag declined significantly after 361 days, but the mass of nitrogen and phosphorus doubled, indicating long-term accumulation of these constituents into the detritus. Subsequently, the leaf C:N ratio dropped significantly from 90 to 34 after 361 days. Following an initial 44-day increase, leaf N:P decreased from 222 to 144, reflecting high accumulation of P relative to N. A review of several estuarine macrophyte decomposition studies reveals a trend in nitrogen accumulation through time regardless of site, but suggests no clear pattern for C and P. We believe that the increase in litter P observed in this study was indicative of the P-limited status of the greater Everglades ecosystem and that decomposing mangrove litter may represent a substantial phosphorus pool in the system
The Influence of Enhanced Post-Glacial Coastal Margin Productivity on the Emergence of Complex Societies
Abstract We analyze the dynamics of post-glacial coastal margin (CM) productivity and explore how it affected the emergence of six complex CM societies. Following deglaciation, global relative sea level stabilized after ~7000 BP and CM productivity significantly increased in many areas. Primary and secondary productivity (fish) likely increased by an order of magnitude or more. Aquatic animals were readily available in the CM providing sources of polyunsaturated omega-3 fatty acids, high quality protein, and nutrients, especially essential to human nutrition. In all six case studies, mature CMs appear to have been occupied by Neolithic agricultural and fishing villages within ~500 years of sea-level stabilization. Within a few hundred years population densities increased and roughly a millennium later social ranking and monumental architecture appeared. Sea-level stabilization and increased CM productivity in conjunction with agricultural intensification in lower alluvial floodplains were major contributors to the origins of many complex CM societies. Keyword
Early respiratory viral infections in infants with cystic fibrosis
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background
Viral infections contribute to morbidity in cystic fibrosis (CF), but the impact of respiratory viruses on the development of airway disease is poorly understood.
Methods
Infants with CF identified by newborn screening were enrolled prior to 4âŻmonths of age to participate in a prospective observational study at 4 centers. Clinical data were collected at clinic visits and weekly phone calls. Multiplex PCR assays were performed on nasopharyngeal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent bronchoscopy with bronchoalveolar lavage (BAL) and a subset underwent pulmonary function testing. We present findings through 8.5âŻmonths of life.
Results
Seventy infants were enrolled, mean age 3.1âŻÂ±âŻ0.8âŻmonths. Rhinovirus was the most prevalent virus (66%), followed by parainfluenza (19%), and coronavirus (16%). Participants had a median of 1.5 viral positive swabs (range 0â10). Past viral infection was associated with elevated neutrophil concentrations and bacterial isolates in BAL fluid, including recovery of classic CF bacterial pathogens. When antibiotics were prescribed for respiratory-related indications, viruses were identified in 52% of those instances.
Conclusions
Early viral infections were associated with greater neutrophilic inflammation and bacterial pathogens. Early viral infections appear to contribute to initiation of lower airway inflammation in infants with CF. Antibiotics were commonly prescribed in the setting of a viral infection. Future investigations examining longitudinal relationships between viral infections, airway microbiome, and antibiotic use will allow us to elucidate the interplay between these factors in young children with CF
Application of the speed-duration relationship to normalize the intensity of high-intensity interval training
The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4Ă4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4Ă4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (P<0.050). For maximal HIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols
SNP Haplotype Mapping in a Small ALS Family
The identification of genes for monogenic disorders has proven to be highly effective for understanding disease mechanisms, pathways and gene function in humans. Nevertheless, while thousands of Mendelian disorders have not yet been mapped there has been a trend away from studying single-gene disorders. In part, this is due to the fact that many of the remaining single-gene families are not large enough to map the disease locus to a single site in the genome. New tools and approaches are needed to allow researchers to effectively tap into this genetic gold-mine. Towards this goal, we have used haploid cell lines to experimentally validate the use of high-density single nucleotide polymorphism (SNP) arrays to define genome-wide haplotypes and candidate regions, using a small amyotrophic lateral sclerosis (ALS) family as a prototype. Specifically, we used haploid-cell lines to determine if high-density SNP arrays accurately predict haplotypes across entire chromosomes and show that haplotype information significantly enhances the genetic information in small families. Panels of haploid-cell lines were generated and a 5 centimorgan (cM) short tandem repeat polymorphism (STRP) genome scan was performed. Experimentally derived haplotypes for entire chromosomes were used to directly identify regions of the genome identical-by-descent in 5 affected individuals. Comparisons between experimentally determined and in silico haplotypes predicted from SNP arrays demonstrate that SNP analysis of diploid DNA accurately predicted chromosomal haplotypes. These methods precisely identified 12 candidate intervals, which are shared by all 5 affected individuals. Our study illustrates how genetic information can be maximized using readily available tools as a first step in mapping single-gene disorders in small families
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (Pâ<â5âĂâ10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and Îł-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
An Agent-Based Model to study the epidemiological and evolutionary dynamics of Influenza viruses
<p>Abstract</p> <p>Background</p> <p>Influenza A viruses exhibit complex epidemiological patterns in a number of mammalian and avian hosts. Understanding transmission of these viruses necessitates taking into account their evolution, which represents a challenge for developing mathematical models. This is because the phrasing of multi-strain systems in terms of traditional compartmental ODE models either requires simplifying assumptions to be made that overlook important evolutionary processes, or leads to complex dynamical systems that are too cumbersome to analyse.</p> <p>Results</p> <p>Here, we develop an Individual-Based Model (IBM) in order to address simultaneously the ecology, epidemiology and evolution of strain-polymorphic pathogens, using Influenza A viruses as an illustrative example.</p> <p>Conclusions</p> <p>We carry out careful validation of our IBM against comparable mathematical models to demonstrate the robustness of our algorithm and the sound basis for this novel framework. We discuss how this new approach can give critical insights in the study of influenza evolution.</p
- âŠ