29 research outputs found

    Low power UWB transceiver design using dynamic voltage scaling

    Get PDF
    Low power consumption is a critical issue in many UWB systems. In this paper, we investigate the application of dynamic voltage scaling (DVS) and other low power design techniques to a multiband-OFDM UWB transceiver baseband circuit design in order to reduce average power consumption of the chip. Our results show significant power savings over the conventional approach. © 2007 IEEE

    Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    Get PDF
    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.X-ray photoelectron spectra were obtained at the National Engineering and Physical Sciences Research Council (EPSRC) XPS User’s Service (NEXUS) at Newcastle University, an EPSRC midrange facility. NR data were obtained on the D17 instrument, and samples were treated in the laboratories of the Partnership for Soft Condensed Matter (PSCM) at the Institut Laue-Langevin. M.H.W. is grateful for funding from the Oppenheimer Trust.This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/acs.langmuir.5b0171

    History and applications of UWB

    No full text
    This mathematical modeling method for wireless networks is designed to take into account propagation effects and interference from unwanted transmissions

    Soil Organic Matter Temperature Sensitivity Cannot be Directly Inferred From Spatial Gradients

    No full text
    Developing and testing decadal-scale predictions of soil response to climate change is difficult because there are few long-term warming experiments or other direct observations of temperature response. As a result, spatial variation in temperature is often used to characterize the influence of temperature on soil organic carbon (SOC) stocks under current and warmer temperatures. This approach assumes that the decadal-scale response of SOC to warming is similar to the relationship between temperature and SOC stocks across sites that are at quasi steady state; however, this assumption is poorly tested. We developed four variants of a Reaction-network-based model of soil organic matter and microbes using measured SOC stocks from a 4,000-km latitudinal transect. Each variant reflects different assumptions about the temperature sensitivities of microbial activity and mineral sorption. All four model variants predicted the same response of SOC to temperature at steady state, but different projections of transient warming responses. The relative importance of Q max , mean annual temperature, and net primary production, assessed using a machine-learning algorithm, changed depending on warming duration. When mineral sorption was temperature sensitive, the predicted average change in SOC after 100 years of 5 °C warming was −18% if warming decreased sorption or +9% if warming increased sorption. When microbial activity was temperature sensitive but mineral sorption was not, average site-level SOC loss was 5%. We conclude that spatial climate gradients of SOC stocks are insufficient to constrain the transient response; measurements that distinguish process controls and/or observations from long-term warming experiments, especially mineral fractions, are needed
    corecore