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ABSTRACT: Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion
inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface
and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer
thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one
negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium
bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at
significantly less than full surface coverage.

■ INTRODUCTION

Nickel is generally renowned for its high resistance to corrosion
under ambient conditions due to the formation of a passive
nickel oxide layer that is consequently slow to react with further
oxidants1,2 and is therefore often used as a protective coating
for other, more reactive, metals.3 It has been reported that
the outermost protective layer formed on nickel in an aqueous
environment is actually a nickel hydroxide, Ni(OH)2, with an
intermediate NiO layer.2,4

However, when exposed to oxidizing acidic solutions, this
resistance to corrosion is vastly reduced, and defects such as
pitting develop.5 As nickel has many industrial uses that require
exposure to an acidic environment,6 numerous additives have
been proposed to protect the surface from these effects.1,7−16

These inhibitors are purported to form a physisorbed protective
layer on the surface, ensuring that the metal is less prone to
attack by corrosive species in solution14,17 in addition to
polarizing the metal surface such that the potential difference
between the anodic and cathodic areas is reduced.18−20

In this work, the efficacy of two different surfactants, sodium
dodecyl sulfate (hereafter SDS) and dodecyltrimethylammo-
nium bromide (hereafter DTAB), as corrosion inhibitors for a
nickel surface (modeled by the deposition of a 100 Å nickel film

on a silicon substrate) under acidic conditions was investigated
using polarized neutron reflectometry (PNR). This was sup-
ported by ς-potential data for characterizing changes in surface
charge, X-ray photoelectron spectroscopy (XPS) for surface
composition and oxidation states, X-ray reflectivity (XRR) to
measure the metal film thickness, and depletion isotherms
to determine the amounts of inhibitor adsorbed. The two
additives were selected as representative paradigms of anionic
(SDS) and cationic (DTAB) surfactants, as well as being very
commonly used materials commercially; both are cited as
having some success as corrosion inhibitors for nickel in acidic
solutions.12,15,21

Neutron reflectometry has previously been used for detailed
investigation of corrosion mechanisms as it uniquely provides
angstrom-level quantification of metal and oxide film growth or
dissolution and film roughnesses.22 Wiesler et al. report the use
of neutron reflectometry to monitor the corrosion of titanium
films deposited on a silicon substrate in a 0.1 N H2SO4 solution.

23

Neutron reflectivity profiles were recorded for a series of
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increasing applied potentials and were interpreted to show
increased oxide layer thickness and decreased metal layer
thickness with increased voltage. A simultaneous increase in
surface roughness and hydrogen ingress into the layer was also
reported. Similarly, Barkhudarov et al. have used neutron
reflectometry to prove the adequacy of superhydrophobic films
to protect aluminum surfaces from corrosion.24

We have previously demonstrated the use of PNR for the
study of adsorption on a magnetic iron film;25,26 as neutrons
with their spin aligned parallel and antiparallel with the layer
magnetization (hereafter referred to as “up-spin” and “down-
spin”) interact differently with the sample, the collection of
neutron reflectivity profiles for the two different polarizations
yields an additional contrast, which further constrains the
model-fitting process and improves the likelihood of finding
the unique structural solution. This is particularly useful for
corrosion studies, where the two spin-state data sets are obtained
simultaneously rather than sequentially. As changes in the surface
structure may occur between solvent exchanges, this approach
uniquely permits the collection of two contrasts for each stage in
the corrosion process.
The ability to contrast match in neutron reflectometry makes

it a particularly powerful surface-study tool;27,28 the scattering
length densities (SLDs) of deuterated and protonated solvents
are significantly different, such that a careful choice of the
mixture of the two permits the selection of an SLD to match
that of other layers in the system. Changes in data may then be
attributed as arising mainly from non-contrast-matched
components, so the model may be greatly simplified. The use
of contrast matching is particularly apt for the nickel/surfactant
systems of interest here. SLD values for the materials used in
this study are shown in Table 1. Although the SLD of nickel for

both up- and down-spin neutrons is higher than that of even
pure D2O such that the solvent cannot be completely matched
to the nickel surface, by characterizing the system consecutively
under D2O and H2O the emphasis may be shifted almost
entirely from the surfactant layer structure to the metal surface,
as shown by the SLD profiles in Figure 1. This enables separate
characterization of the adsorbed layer and corroding metal
surface.

■ EXPERIMENTAL SECTION
Materials. Substrates for neutron experiments were prepared by

sputtering nickel films to a thickness of approximately 100 Å onto
a polished silicon substrate, (111) orientation, (n) type, of diameter
55 mm and thickness 5 mm, using reactive magnetron sputtering in
vacuo29 at the Nanoscience Centre at the University of Cambridge.
For XPS and XRR measurements the same method was used on
smaller substrates (10 × 10 × 0.5 mm3). Nickel oxide (NiO) powder
used in ς-potential and isotherm measurements was purchased
from Fuel Cell Materials, with a BET surface area of 3.7 m2 g−1

(as determined by the adsorption of nitrogen at the Department of
Chemical Engineering and Biotechnology, University of Cambridge).
Other chemicals were purchased from Sigma-Aldrich and used without

further purification (all had purities >99% as determined by GC and
titration). The purities of SDS and DTAB were confirmed using
surface tension measurements, which showed no evidence of a dip at
the critical micelle concentration (CMC), which would be indicative of
surface-active impurities.

XPS. XPS measurements were taken at the NEXUS laboratory
(Newcastle University, U.K.) using the AXIS Nova XPS spectrometer.
XPS spectra were recorded for the films as-sputtered and also for those
cleaned using UV/ozone (30 min). Spectra were fitted using the
CasaXPS software and calibrated by setting the C 1s peak to 285.0 eV.

XRR. XRR measurements were carried out at the Cavendish
Laboratories in Cambridge using a Bruker D8 X-ray diffractometer with
a copper target and a Goebel mirror. An accelerating voltage of 40 kV

Table 1. SLD Values

ρ/× 10−6 Å−2 ρ/× 10−6 Å−2

Si 2.072 SiO2 3.480
Ni (up spin) 10.86 Ni (down spin) 7.940
NiO 8.661 Ni(OH)2 3.843
H2O −0.561 D2O 6.335
SDS 0.337 DTAB −0.220

Figure 1. By using (a) D2O or (b) H2O as the bulk solvent, the
surfactant layer or metal surface may be selectively emphasized as
shown.

Langmuir Article

DOI: 10.1021/acs.langmuir.5b01718
Langmuir 2015, 31, 7062−7072

7063

http://dx.doi.org/10.1021/acs.langmuir.5b01718
http://pubs.acs.org/action/showImage?doi=10.1021/acs.langmuir.5b01718&iName=master.img-002.jpg&w=226&h=515


and a primary beam size of 0.1 mm were used. The detector was
operated in single pixel (0D) mode. Samples were cleaned with
UV/ozone (30 min) before being soaked in ultrapure water (UPW)
adjusted to the required pH by the requisite volume of nitric acid for
2 h and dried using a flow of N2 gas before measurement. Data were
fitted to a structural model using GenX 2.0 software to minimize the
figure of merit (FOM).30 The Parratt algorithm was used to generate
the model fits.31

ς Potential. To measure the ς potential of the NiO powder
over a range of pH values, solutions of sodium nitrate (concentrations
1−100 mM) were adjusted to each pH as required using nitric acid or
sodium hydroxide. NiO powder (1 mg mL−1) was then dispersed in the
solution, and the average particle size and ς potential were measured
using a Brookhaven ZetaPALS dynamic light scatterer. Further profiles
were measured at 10 mM sodium nitrate concentration, with the
addition of either 7 mM SDS or DTAB to the dispersion.
Solution Depletion Isotherms. Solution depletion isotherms of

SDS and DTAB on the NiO powder were obtained in sodium nitrate-
buffered (0.01 M) aqueous solution at pH 2 and 4. Samples (over a
concentration range of 0−20 mM) were tumbled with NiO powder
(1 g) over a period of 24 h to ensure that equilibration was attained.
The solid was then separated by centrifugation, and the final con-
centration of the supernatant in each case was measured using a total
organic carbon analyzer (Sievers InnovOx 3.00).
PNR. PNR measurements were collected using the D17 instrument

at the Institut Laue-Langevin in Grenoble, France. The instrument was
run in monochromatic, polarized mode, with vertically mounted
samples and a vertical guidefield at the sample position between 250
and 300 G. The neutron wavelength used was 5.6 Å with a resolution
of Δλ/λ = 6% (fwhm). The polarization of the incoming beam was
98.7 ± 0.05%, and the efficiency of the spin flipper was 97 ± 0.3%.
The measurements were performed by measuring the reflectivity of
the two aforementioned spin states without polarization analysis. The
beam footprint on the sample was fixed to (35 × 35) mm2, and the
angular divergence of the incoming beam was Δθ/θ = 3% (fwhm).

Two nickel-sputtered silicon substrates (hereafter referred to as
substrates 1 and 2 for convenience) were cleaned using UV/ozone
(30 min) before being enclosed in custom-designed cells, as
successfully used previously.26 These were passed through a magnetic
field of 1000 G next to the parallel guidefield in order to saturate the
Ni magnetization before being secured in the beam path without
leaving the guidefield at any point. Both substrates were characterized
under pure H2O and pure D2O in order to extract the nickel film and
oxide layer thicknesses and roughnesses. To substrate 1, a 5 mM
solution of SDS at pH 6 was then added, and the surfactant layer
was characterized under both water contrasts. Solutions (5 mM) at
pH 4 and 2 were consecutively flushed through the sample cell, and
neutron reflectivity profiles were obtained at each pH for both water
contrasts. The same approach was adopted for substrate 2, using 5 mM
DTAB as the additive rather than SDS. The concentration value of
5 mM, lying below the CMC of both SDS and DTAB over the whole
pH range of interest here, was chosen from the depletion isotherm
data as a concentration at which significant SDS adsorption was known
to occur. The PNR data were fitted to a structural model using the
Rascal fitting program to minimize χ2. Calculations indicated that the
small element of beam depolarization (approximately 3%), combined
with the similarity of the given Ni spin up- and down-spin SLDs, did
not lead to a significant difference in the structural characterization of
the layers and hence the data sets were fitted as pure up-spin and
down-spin systems.

■ RESULTS AND DISCUSSION
XPS. Comparison of the XPS survey spectra for nickel films

cleaned using a range of different methods demonstrated that
exposure to UV/ozone for 30 min was most effective at reduc-
ing the C 1s peak and thus removing surface contamination.
This process was consequently adopted as the standard cleaning
procedure in this work. Representative spectra for the Ni 2p
region are shown in Figure 2, comparing an untreated film (i)

Figure 2. Ni 2p region for (i) the precleaned film (normalized to higher counts for ease of viewing) and (ii) the cleaned film. Data are shown in gray,
with the fit shown in black and individual fitted peaks as dotted lines.
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with one cleaned by UV/ozone (ii). The oxidizing nature of the
cleaning process has clearly significantly changed the surface
composition; the untreated film shows some Ni metal present;
this is entirely lost in the cleaned film, which entirely comprises
a mixture of oxide and hydroxide. While the fitting of XPS
spectra is a nontrivial matter and is not attempted in detail here,
reasonable fits for the 2p3/2 regions of both spectra are shown
in Figure 2, with the peak assignments summarized in Table 2.

The least number of peaks possible was used to obtain a
plausible fit, which shows the presence of Ni metal in the
untreated film along with the two main speciesthe oxide NiO
and hydroxide Ni(OH)2with their respective satellite peaks at
slightly higher binding energies. The oxide and hydroxide are
seen exclusively in the cleaned film. The fit also necessitated the
inclusion of a broad peak at 862.16 eV; this is attributed to a
“shake-up” structure (caused by the interaction of the ejected

photoelectron with the ion it is leaving, resulting in its further
excitation, and overall decreased energy of the photoelectron to
produce a peak at an apparent higher binding energy) and other
intrinsic losses, as observed by several other authors for Ni 2p
spectra.32−34

XRR. The X-ray reflection (XRR) data for a sample cleaned
by UV/ozone is shown in Figure 3(i). The best fit gave an oxide
layer that was resolved into two equal layers with densities
corresponding to those expected for NiO and Ni(OH)2, in good
agreement with the XPS data. The nickel film was subsequently
soaked in HNO3 (0.1 M, pH 1.0) for 1 h, and the XRR profile
was measured, as also shown in Figure 3(ii). It is clear that
essentially the entire nickel layer has been dissolved, with a very
thin, highly roughened layer remaining.

ς Potential. The ς-potential results are shown in Figure 4.
Data were measured over a range of background salt concentra-
tions (Figure 4a) to confirm that sodium nitrate acts as an
indifferent electrolyte.35 The increasing slope steepness for
lower concentrations is attributed to the overall lower ionic
strength; the potential will fall more quickly with distance from
the surface.36 From these data, the point of zero charge (PZC)
for the NiO surface was determined to lie in the pH range
of 6.7−7.4. This agrees well with literature values37 (although
variance is seen for differing conditions) and indicates a
positively charged metal surface for the pH range studied here.
Figure 4b also shows the ς-potential curves for the surface in
0.01 M sodium nitrate with added surfactant. It is clear that
upon addition of 7 mM DTAB the surface remains positively
charged across the entire pH range measured, whereas the
addition of 7 mM SDS renders the surface negatively charged
across the range measured. These data clearly indicate
significant adsorption of the SDS at acidic pH such that the
positively charged surface is both neutralized and even rendered
negative by SDS adsorption. In contrast, at these pH values, the

Table 2. XPS Peak Fits for the Nickel Film Ni 2p3/2 Regions

assignment binding energy/eV area % fwhm/eV

Nickel Film Precleaning
Ni 2p3/2 852.48 16.66 1.0

NiO 2p3/2 853.45 30.42 3.0
Ni(OH)2 2p3/2 856.07 26.29 2.3
NiO 2p3/2 satellite 858.31 10.44 2.5
Ni(OH)2 2p3/2 satellite 861.23 13.22 2.8
shake-up structure 863.79 2.97 2.3

Nickel Film after UV/Ozone Cleaning
NiO 2p3/2 854.35 23.90 2.4
Ni(OH)2 2p3/2 856.15 36.44 3.0
NiO 2p3/2 satellite 858.63 3.96 2.3
Ni(OH)2 2p3/2 satellite 861.06 7.15 2.6
shake-up structure 862.16 28.55 5.9

Figure 3. XRR data for the nickel film (i) in air and (ii) after exposure to HNO3 (0.1 M) for 1 h with model fits shown as black lines.
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DTAB has little effect on the surface charge, although it does
keep the surface positively charged at higher pH.
Solution Depletion Isotherms. The depletion isotherms

of SDS and DTAB on NiO powder in 0.01 M sodium nitrate
solution are shown in Figure 5. It is immediately clear that SDS
and DTAB exhibit very different behavior at the pH values

measured, with SDS showing far greater amounts adsorbed
than positively charged DTAB. Using the linear regression
method, isotherms were fitted to Langmuir, Freundlich, and
BET isotherm models, with the latter showing the best fit to the
data (as shown in Figure 5), signifying multilayer adsorption.
This is also supported by the areas per molecule; for SDS the

Figure 4. (a) ς-potential curves for NiO powder in sodium nitrate solution over a range of concentrations (black, 0.1 M; dark gray, 0.05 M; light
gray, 0.01 M). (b) ς-potential curves for NiO powder in 0.01 M sodium nitrate solution (black) with added 7 mM DTAB (dark gray) or SDS
(light gray).
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area per 2 molecules for an equilibrium concentration of 3 mM
is 24 Å2 (±5 Å); as the headgroup area is expected to occupy
just under 20 Å2,38 this would imply the formation of a bilayer.
This is plausible; a monolayer would be unfavorable due to
interactions of the hydrophobic tail with water, which are
prevented by the formation of a bilayer. SDS seems to adsorb
similarly at both pH 4 and 2, which is consistent with the
plateau observed in the ς-potential graph at low pH (Figure 4).
For DTAB, significantly less adsorption is seen, with an area

per 2 molecules of 69 Å2 (±5 Å) for pH 4 at an equilibrium
concentration of 3 mM; at pH 2, barely any adsorption is seen
within the experimental error. That there is any DTAB adsorbing
at all at pH 4 is somewhat surprising, given the presumed
repulsion between the positively charged surfactant and
positively charged surface. Potential explanations are discussed
in the PNR section below.
PNR. Neutron reflectivity profiles (plots of the measured

reflectivity as a function of momentum transfer perpendicular
to the surface) were initially collected for both nickel substrates
1 and 2 under D2O and H2O in order to characterize the nickel
and oxide layers before adding surfactant. For substrate 1,
a nickel film of thickness 116 (±3) Å (agreeing well with the
estimated deposition thickness) and roughness 5 Å and a NiO
film of thickness 23 (±2) Å and roughness 7 Å were modeled.
Similar parameters were observed for substrate 2, with a nickel
film of 123 (±3) Å thickness and 5 Å roughness and a NiO
thickness of 19 (±2) Å with roughness 7 Å. While the XPS data
clearly show a mixture of nickel hydroxide, Ni(OH)2, and
oxide, NiO, at the surface, the hydroxide is harder to see in the
PNR data; the best fit is obtained with an oxide of high density
(i.e., NiO with no H present, as H has a low SLD). This is
attributed to the exchange of surface H with H or D in the
solvent. The addition of a hydroxide layer (either Ni(OD)2 or
Ni(OH)2 depending on the contrast) to the model calculations
did nothing to enhance the fit and so was not included.

For substrate 1, upon addition of a 5 mM solution of SDS,
a surfactant layer is clearly seen to form at the surface. The
data for the bare metal surface are compared to those for
the added SDS in Figure 6a. For the D2O contrasts, where we
would expect to see changes due to the surfactant layer (as
demonstrated in Figure 1), a clear difference is seen, indicating
significant SDS adsorption onto the nickel surface, as observed
in the depletion isotherm. To determine the surfactant layer
structural parameters, three different layer models were fitted to
the data for comparison, shown schematically in Figure 7a−d.
Initially, a simple block layer was fitted with a thickness of
29 (±2) Å (hydration 40%, roughness 7 Å). As the length of
the extended molecule is known39 to be around 18 Å, this may
imply an interdigitated or tilted bilayer (shown in Figure 7a,b)
or simply the effect of chain folding and cis conformations
rather than a rigid straight chain.
However, while the concentration of the SDS solution was

well below the critical micelle concentration40 (CMC) of
8 mM, it is possible that a high local surfactant concentration
at the surface may lead to micelle formation, an adsorption
model that has been postulated previously for SDS and other
surfactants on various surfaces. (For example, Li et al. attribute
neutron reflectometry data for SDS on alumina surfaces to an
oblate micellar structure.41) As the fitted hydration of the bilayer
was close to that which might be expected for a spherical
volume on the surface, two custom layer models were tried that
fitted either cylindrical or spherical micelles adsorbed at the
surface (depicted schematically in Figure 7c,d). Details of the
fitting process and the fits themselves may be found in the
Supporting Information. However, there was no obvious
improvement in the fit seen by using either of the micellar
models, with similar χ2 values for all three models tried. Specular
neutron reflectometry gives structural information pertaining to
the z plane and hence lacks sensitivity to in-plane structure.
Therefore, it is not possible to determine which of these three

Figure 5. Isotherms of SDS (◊ pH 4 and ● pH 2) and DTAB (Δ pH 4 and × pH 2). BET models are shown as lines.
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models best describes the SDS system without further structural
studies, although the lack of any significant increase in the
background upon addition of SDS may support a more ordered
bilayer rather than the micellar structures proposed.

The SDS layer thicknesses for all three models were very
similar at 27−29 Å. Using the fitted thickness values and the %
coverage value (taken to be the hydration value for the bilayer
or the fractional volume of a cylinder or sphere respectively) to

Figure 6. PNR data for (a) substrate 1 and (b) substrate 2, for the bare substrate under water (•) and upon addition of 5 mM SDS (a) or DTAB (b)
at pH 4 (o). In each case data are shown in descending order: up-spin D2O, down-spin D2O, up-spin H2O, and down-spin H2O. (Subsequent
profiles are divided by 10 for the purpose of clarity.) Solid lines show model fits to the data. Insets show the fitted SLD profiles for the surfaces plus
surfactant layers at pH 4.
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calculate the surface coverage (assuming molecular volumes
of 4.741 × 10−28 m3 and 2.996 × 10−29 m3 for SDS and D2O,
respectively, calculated from their literature densities and
molecular weights), coverage values of between 1.72 × 10−5

and 1.85 × 10−5 mol m−2 were obtained for pH 4. As can be
seen from Figure 5, the higher limit of this range is slightly
greater than the value expected from the depletion isotherms,
but as the back calculation from the PNR data assumes an
unrealistically entirely flat, smooth surface, it is not unreason-
able that it overestimates the coverage value (since within each
“flat” square meter the surface area is actually larger due to
roughness), so this is taken to be satisfactory agreement
between the two methods. While the two methods do present
slightly different systems in that a powdered surface may not
always interact with components in solution in the same way as
a planar surface, it is clear that in this case the two techniques
give rise to the same conclusions. For these experiments, the

powder used was of sufficiently large particle size that it may be
considered to be an adequate model for the planar surface.
For substrate 1, when the pH was lowered to 2, very little

change was observed in the metal film structure (shown by the
similarity of the H2O contrast data in Figure 8a) even for

measurements taken after 12 h; the nickel thickness had not
changed within the error margins of the model, as it was found
to have “decreased” to 114 (±3) Å, with a small increase in the
NiO film thickness of 4 Å. The Ni film roughness had also
increased to 12 Å, indicating that some corrosion had occurred.
However, as the loss of 2 Å Ni over 12 h equates to only
0.146 μm per year, corrosion may be said to occur at a
negligible rate. Little change in the SDS thickness was observed
for any model, although a slight increase in roughness was seen.
This agrees well with the depletion isotherm data.
For substrate 2, when 5 mM DTAB was added, a small

change was seen in the D2O data (Figure 6b), signifying some

Figure 7. Schematics of fitted models for (a−d) SDS and (e) DTAB.
(a) Interdigitated bilayer, (b) tilted bilayer, (c) spherical micelles, (d)
cylindrical micelles, and (e) anion-mediated adsorption.

Figure 8. H2O data (points) and fits (lines) at pH 6 (black) and pH 2
(gray) for (a) SDS data and (b) DTAB data.
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layer formation, though much less so than for SDS. However,
the only plausible fit to the PNR data is obtained by fitting an
interlayer of water (14 Å thick, roughness 3 Å) between the
metal surface and a 33 (±2) Å thick layer of DTAB, with a
roughness of 10 Å and 61% hydration. When the pH is lowered
to 4, the DTAB layer and interlayer thicknesses do not change
within the error margins, but the DTAB hydration increases to
74%, indicating a highly disperse layer. Clearly, DTAB shows
much less affinity for the surface, as would be expected from the
DTAB and ς-potential data.
As noted above, the adsorption of DTAB is surprising

given that both the surfactant and nickel surface are positively
charged at these pH values. Yet this is observed in both
depletion isotherm and PNR data. One possible explanation for
this behavior is a model of anion-mediated adsorption by means
of the bromide anion (depicted schematically in Figure 7e). It is
assumed from both the isotherm and PNR data that this would
take the form of disperse, elongated micelles rather than an
energetically unfavorable monolayer. While the phenomenon
of cation bridging is well documented in the literature,42,43 there
is scant reference to the possibility of an anionic equivalent.
However, anions have long been recognized as providing
“bridges” between oxidized metal centers as ligands in electron-
transfer mechanisms in solution,44 so it is reasonable to suggest
that given the right conditions they could provide a similar
function at the surfactant−metal surface interface. Anionic
polymers are known to provide bridges between positively
charged amine layers to promote their adsorption.45 Ma et al.
account for adsorption of cetyltrimethylammonium bromide
(CTAB) on copper surfaces via a similar anion-bridging
mechanism,46,47 and Rudnik et al. observe the adsorption of
CTAB onto positively charged SiC surfaces, although they
attribute this to patches of negative or neutral charge on a
surface with overall positive charge.48 More significantly, there
exist several studies on the corrosion of iron in acidic solutions
where it has been suggested that the preadsorption of halide
ions to the positively charged iron surface can promote the
adsorption of positively charged surfactants with ammonium
headgroups and thus hinder corrosion synergistically. In these
studies the effect is most enhanced for the iodide anion, I−,
but may also be seen for bromide ions.49−53 Significant cation
bridging has been observed previously only for multivalent
cations, presumably due to their need to simultaneously bind
both to anionic surface groups and the anionic surfactant,
although Franchi et al. observe some effect of cation bridging for
nucleic acids on positively charged clay surfaces at high sodium
ion concentrations.54 Bromide ions are known to adsorb to
metal surfaces and are indeed sometimes thought to contribute
to their corrosion;55,56 therefore, it is conceivable that the Br−

ions from the DTAB molecules are interacting with the nickel
surface so that the remaining DTA+ ions are weakly attracted to
the interface.
Neutron reflectometry studies concerning cation bridge-

mediated adsorption do not document the hydrated interlayer
seen here.42 While the Ca2+ ion is considerably smaller than
the Br− ion due to electron repulsion in the latter, this size
difference is probably not great enough to account for the fitted
water layer thickness; however, when taking into account the
hydration value of 6 for the bromide ion57 as well as possible
bound water molecules on the nickel oxide surface and
given that the bromide ion and water molecule have radii of
approximately 2 and 1.5 Å, respectively, in aqueous solution,58

an overall thickness of around 14 Å for the water interlayer is

certainly not unreasonable. The greater surface−surfactant
distance may also be attributed to the weakness of the inter-
action in this instance, as Br− is a so-called “soft” anion.
When a 5 mM DTAB solution at pH 2 was flushed through

the cell, the entire Ni layer was seen to dissolve in under 6 h,
as clearly evident in the H2O data (Figure 8b) with the fringe
structure completely lost. The separation between the two data
sets for up- and down-spin neutrons is also lost, signifying the
lack of any net magnetization and hence the loss of magnetized
material, i.e., nickel metal. In addition, the overall intensity
has dropped, corresponding to an increase in roughness; a
significant increase in off-specular scattering was also observed at
this pH, corroborating the roughness increase observed by the
specular signal.
While this work has focused mostly on the development

of the techniques described for the nickel surfaces and hence
two surfactants were chosen that were mainly comparable in
structure with the exception of their headgroups, which have
different charges and chemistry, it does perhaps raise some
interesting questions about the nature of the ideal corrosion
inhibitor. Although the action of a corrosion inhibitor has
sometimes been described as purely providing a physical barrier
between the surface and attacking species in solution, it is clear
that a well-packed dense layer is not always necessary because
in this case the SDS layer has a coverage of only around 60%
and yet is still sufficient to prevent corrosion. It may, therefore,
be presumed that the interaction between the adsorbate
headgroup and surface is of paramount importance, and indeed
it has been suggested that the primary action of corrosion
inhibitors is to bind to specific active sites on the surface such
that only a relatively low concentration of inhibitor, significantly
below full surface coverage, is required to passivate it.59,60 A key
role of the alkyl chain may lie, therefore, in facilitating the
optimal solubility and transport kinetics of the inhibitor rather
than simply acting as a physical barrier; a short-enough chain
is needed to ensure a high-enough solubility for sufficient
surfactant to reach the surface, but the solubility should not be
too high such that upon binding the adsorbate does not then
pull the metal ions away, thus corroding, rather than passivating,
the surface.

■ CONCLUSIONS
All of the techniques used in this study have clearly shown
that while DTAB is entirely ineffective at protecting nickel
surfaces from the effects of corrosion in an acidic medium, SDS
prevents significant corrosion (scaled to <0.2 μm year−1) at
pH 2, although some surface roughening is seen, indicating
that it cannot be considered to be a perfect corrosion inhibitor.
The method also highlights the extreme sensitivity of the
PNR approach to even tiny levels of corrosion that would
be completely invisible by other more traditional methods.
A significant amount of adsorbed SDS is observed from both
depletion isotherm and PNR data, although its exact structure
on the surface remains uncertain, with spherical and cylindrical
micellar structures possible; these cannot be distinguished in
this instance from a tilted or interdigitated bilayer. The use of
PNR is demonstrated as a useful tool to obtain detailed para-
meters for the corrosion inhibition mechanisms of surfactants
on metals, due to the combination of contrast matching, to
selectively monitor the surfactant or metal surface at any one
time, with the ability to determine metal and oxide film
thicknesses and roughnesses to angstrom-level accuracy. The
PNR data for the DTAB system at pH 6 and 4, possibly
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surprisingly, seemed to indicate some DTAB adsorption, albeit
weak, with the existence of a hydrated interlayer. The origin
of this layer is uncertain. An anion-mediated mechanism has
been considered, whereby the Br− anions interact simulta-
neously between the positively charged surface and surfactants.
However, this weakly bound DTAB layer proved entirely
ineffectual at protecting the surface from corrosion, with the
complete dissolution of the nickel film observed within 6 h
at pH 2.
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