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Abstract
The existence of anti-periodic solutions with symmetry for high-order Duffing
equations and a high-order Duffing type p-Laplacian equation has been studied by
using degree theory. The results obtained enrich some known works to some extent.
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1 Introduction
Anti-periodic problems arise naturally from the mathematical models of various physical
processes (see [, ]) and also appear in the study of partial differential equations and
abstract differential equations (see [–]). For instance, electron beam focusing system in
traveling-wave tube theories is an anti-periodic problem (see []).
In mechanics, the simplest model of oscillation equation is a single pendulum equation

x′′ +ω sinx = e(t)
(≡ e(t + π )

)
,

whose anti-periodic solutions satisfy

x(t + π ) = –x(t), ∀t ∈R.

During the past twenty years, anti-periodic problems have been studied extensively
by numerous scholars. For example, for first-order ordinary differential equations, a
Massera’s type criterion was presented in [] and the validity of the monotone iterative
technique was shown in []. Moreover, for higher-order ordinary differential equations,
the existence of anti-periodic solutions was considered in [–]. Recently, existence re-
sults were extended to anti-periodic boundary value problems for impulsive differential
equations (see []), and anti-periodic wavelets were discussed in [].
It is well known that higher-order p-Laplacian equations are derived from many fields

such as fluid mechanics and nonlinear elastic mechanics. In the past few decades, many
important results on higher-order p-Laplacian equations with certain boundary condi-
tions have been obtained.We refer the readers to [–] and the references cited therein.
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In [], the authors considered the existence of anti-periodic solutions for the high-order
Duffing equation as follows:

x(n) +
n–∑
i=

aix(i) + g(t,x) = e(t). (.)

Moreover, in [] the authors discussed the existence of anti-periodic solutions for the
following higher-order Liénard type p-Laplacian equation:

(
φp

(
x(n)

))(n) + f (x)x′ + g(t,x) = e(t). (.)

However, to the best of our knowledge, there exist relatively few results on the existence of
anti-periodic solutionswith symmetry for (.) and (.). Thus, it is worthwhile to continue
to investigate the existence of anti-periodic solutions with symmetry for (.) and (.).
Motivated by the works mentioned previously, in this paper, we study the existence of

anti-periodic solutions with symmetry for high-order Duffing equations of the forms:

x(m+) +
m∑
i=

aix(i–) + g(t,x) = e(t), (.)

x(m+) +
m∑
i=

aix(i) + g(t,x) = e(t) (.)

and high-order Duffing type p-Laplacian equation of the form:

(
φp

(
x(m+)))(m+) + g(t,x) = e(t), (.)

where p >  is a constant, m ≥  is an integer, φp(s) = |s|p–s; ai ∈ R, g ∈ C(R,R), e ∈
C(R,R) with g(t + π , –x) ≡ –g(t,x), e(t + π ) ≡ –e(t). Obviously, the inverse operator of φp

is φq, where q >  is a constant such that 
p +


q = .

Notice that, when p = , the nonlinear operator (φp(x(m+)))(m+) reduces to the linear
operator x(m+). On the other hand, x(t) is also a π-periodic solution if x(t) is a π-anti-
periodic solution. Hence, from the arguments in this paper, we can also obtain the exis-
tence results on periodic solutions for the above equations.
The rest of this paper is organized as follows. Section  contains some necessary prelim-

inaries. In Section  and Section , basing on the Leray-Schauder principle, we establish
some existence theorems on anti-periodic solutions with symmetry of (.), (.) and (.).
Our results are different from those of bibliographies listed in the previous texts.

2 Preliminaries
For the sake of convenience, we set

Ck,π =
{
x ∈ Ck(R,R) : x(t + π ) ≡ –x(t)

}
, k ∈ {, , . . .}

with the norm

‖x‖Ck = max
i∈{,,...,k}

{∥∥x(i)∥∥

}
,
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where ‖x‖ =maxt∈[,π ] |x(t)|, and

Ck,π
 =

{
x ∈ Ck,π : x(–t) ≡ x(t)

}
,

Ck,π
 =

{
x ∈ Ck,π : x(–t) ≡ –x(t)

}

with the norm ‖ · ‖Ck .
Notice that, x ∈ C,π

 may be written as Fourier series as follows:

x(t) =
∞∑
i=

ai+ cos(i + )t,

and x ∈ C,π
 may be written as the following Fourier series:

x(t) =
∞∑
i=

bi+ sin(i + )t,

where ai+,bi+ ∈R. We define the mapping J : C,π
 –→ C,π

 by

(Jx)(t) =
∫ t


x(s)ds =

∞∑
i=

ai+
i + 

sin(i + )t, ∀t ∈R

and the mapping J : C,π
 –→ C,π

 by

(Jx)(t) =
∫ t


x(s)ds –

∞∑
i=

bi+
i + 

= –
∞∑
i=

bi+
i + 

cos(i + )t, ∀t ∈R.

It is easy to prove that the mappings J, J are completely continuous by using the Arzelà-
Ascoli theorem.
Next, we introduce a continuation theorem (see []) as follows.

Lemma . (Continuation theorem) Let � be open bounded in a linear normal space X.
Suppose that f is a completely continuous field on �. Moreover, assume that the Leray-
Schauder degree

deg(f ,�,p) 
= , for p ∈ X\f (∂�).

Then the equation f (x) = p has at least one solution in �.

3 Anti-periodic solutions with symmetry of (1.3) and (1.4)
In this section, some existence results on anti-periodic solutions with symmetry of (.)
and (.) will be given.

Theorem . Assume that

http://www.boundaryvalueproblems.com/content/2012/1/108
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(H) the functions g(t,x) and e(t) are odd in t, i.e.,

g(–t, ·) = –g(t, ·), e(–t) = –e(t), ∀t ∈R;

(H) there exist non-negative functions α,β ∈ C(R,R+) such that

∣∣g(t,x)∣∣ ≤ α(t)|x| + β(t), ∀t,x ∈R;

(H)
∑m

i= |ai| + ‖α‖ –  < .

Then (.) has at least one even anti-periodic solution x(t), i.e., x(t) satisfies

x(t + π ) = –x(t), x(–t) = x(t), ∀t ∈R.

Proof For making use of the Leray-Schauder degree theory to prove the existence of even
anti-periodic solutions for (.), we consider the following homotopic equation of (.):

x(m+) = –λ

m∑
i=

aix(i–) – λg(t,x) + λe(t), λ ∈ [, ]. (.)

Define the operator D : Cm+,π
 –→ C,π

 by

(Dx)(t) = x(m+)(t), ∀t ∈R.

Obviously, the operator D is invertible. Let N : Cm–,π
 –→ C be the Nemytskii oper-

ator

(Nx)(t) = –
m∑
i=

aix(i–)(t) – g
(
t,x(t)

)
+ e(t), ∀t ∈R.

By hypothesis (H), it is easy to see that

(Nx)(t + π ) ≡ –(Nx)(t), (Nx)(–t) ≡ –(Nx)(t), ∀x ∈ Cm–,π
 .

Thus, the operator N sends Cm–,π
 into C,π

 . Hence, the problem of even anti-periodic
solutions for (.) is equivalent to the operator equation

Dx = λNx, x ∈ Cm+,π
 .

From hypotheses (H), (H) and () in [], for the possible even anti-periodic solution
x(t) of (.), there exists a prior bounds in Cm+,π

 , i.e., x(t) satisfies

‖x‖Cm+ ≤ T, (.)

where T is a positive constant independent of λ. So, our problem is reduced to construct
one completely continuous operator Fλ, which sends Cm+,π

 into Cm+,π
 , such that the

http://www.boundaryvalueproblems.com/content/2012/1/108
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fixed points of operator F in some open bounded set are the even anti-periodic solutions
of (.).
With this in mind, let us define the set as follows:

� =
{
x ∈ Cm+,π

 : ‖x‖Cm+ < T + 
}
.

Obviously, the set � is a open bounded set in Cm+,π
 and zero element θ ∈ �. Define

the completely continuous operator Fλ :� –→ Cm+,π
 by

Fλx = JJ · · · JJ︸ ︷︷ ︸
m+

λNx = λD–
Nx, λ ∈ [, ].

Let us define the completely continuous field hλ(x) :� × [, ] –→ Cm+,π
 by

hλ(x) = x – Fλx.

By (.), we get that zero element θ /∈ hλ(∂�) for all λ ∈ [, ]. So, the following Leray-
Schauder degrees are well defined and

deg(id – F,�, θ ) = deg(h,�, θ )

= deg(h,�, θ ) = deg(id,�, θ ) =  
= .

Consequently, the operator F has at least one fixed point in � by using Lemma ..
Namely, (.) has at least one even anti-periodic solution. The proof is complete. �

Theorem . Assume that

(H) the function g(t,x) is even in t, x and e(t) is even in t, i.e.,

g(–t, –x) = g(t,x), e(–t) = e(t), ∀t ∈ R

and the assumptions (H), (H) are true.

Then (.) has at least one odd anti-periodic solution x(t), i.e., x(t) satisfies

x(t + π ) = –x(t), x(–t) = –x(t), ∀t ∈R.

Proof We consider the homotopic equation (.) of (.). Define the operator D :
Cm+,π
 –→ C,π

 by

(Dx)(t) = x(m+)(t), ∀t ∈R.

Let N : Cm–,π
 –→ C,π be the Nemytskii operator

(Nx)(t) = –
m∑
i=

aix(i–)(t) – g
(
t,x(t)

)
+ e(t), ∀t ∈ R.

http://www.boundaryvalueproblems.com/content/2012/1/108
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By hypothesis (H), it is easy to see that

(Nx)(–t)≡ (Nx)(t), ∀x ∈ Cm–,π
 .

Thus, the operator N sends Cm–,π
 into C,π

 . Hence, the problem of odd anti-periodic
solutions for (.) is equivalent to the operator equation

Dx = λNx, x ∈ Cm+,π
 .

Our problem is reduced to construct one completely continuous operator Gλ, which
sendsCm+,π

 intoCm+,π
 , such that the fixed points of operatorG in some open bounded

set are the odd anti-periodic solutions of (.).With this inmind, let us define the following
set:

� =
{
x ∈ Cm+,π

 : ‖x‖Cm+ < T + 
}
.

Define the completely continuous operator Gλ :� –→ Cm+,π
 by

Gλx = JJ · · · JJ︸ ︷︷ ︸
m+

λNx = λD–
Nx, λ ∈ [, ].

The remainder of the proof work is quite similar to the proof of Theorem ., so we omit
the details. The proof is complete. �

Theorem . Assume that

(H) the functions g(t,x) and e(t) are even in t, i.e.,

g(–t, ·) = g(t, ·), e(–t) = e(t), ∀t ∈R

and the assumptions (H), (H) are true.

Then (.) has at least one even anti-periodic solution.

Proof We consider the homotopic equation of (.) as follows:

x(m+) = –λ

m∑
i=

aix(i) – λg(t,x) + λe(t), λ ∈ [, ]. (.)

Define the operator D : Cm+,π
 –→ C,π

 by

(Dx)(t) = x(m+)(t), ∀t ∈R.

Let N : Cm,π
 –→ C,π be the Nemytskii operator

(Nx)(t) = –
m∑
i=

aix(i)(t) – g
(
t,x(t)

)
+ e(t), ∀t ∈R.

http://www.boundaryvalueproblems.com/content/2012/1/108
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By hypothesis (H), it is easy to see that

(Nx)(–t)≡ (Nx)(t), ∀x ∈ Cm,π
 .

Thus, the operator N sends Cm,π
 into C,π

 . Hence, the problem of even anti-periodic
solutions for (.) is equivalent to the operator equation

Dx = λNx, x ∈ Cm+,π
 .

Our problem is reduced to construct one completely continuous operator Lλ, which
sendsCm+,π

 intoCm+,π
 , such that the fixed points of operator L in some open bounded

set are the even anti-periodic solutions of (.). With this in mind, let us define the follow-
ing set:

� =
{
x ∈ Cm+,π

 : ‖x‖Cm+ < T + 
}
,

where T is a positive constant independent of λ. Define the completely continuous oper-
ator Lλ :� –→ Cm+,π

 by

Lλx = JJ · · · JJ︸ ︷︷ ︸
m+

λNx = λD–
Nx, λ ∈ [, ].

The remainder of the proof work is quite similar to the proof of Theorem ., so we omit
the details. The proof is complete. �

Theorem . Assume that

(H) the function g(t,x) is odd in t, x and e(t) is odd in t, i.e.,

g(–t, –x) = –g(t,x), e(–t) = –e(t), ∀t ∈R

and the assumptions (H), (H) are true.

Then (.) has at least one odd anti-periodic solution.

Proof We consider the homotopic equation (.) of (.). Define the operator D :
Cm+,π
 –→ C,π

 by

(Dx)(t) = x(m+)(t), ∀t ∈ R.

Let N : Cm,π
 –→ C,π be the Nemytskii operator

(Nx)(t) = –
m∑
i=

aix(i)(t) – g
(
t,x(t)

)
+ e(t), ∀t ∈R.

By hypothesis (H), it is easy to see that

(Nx)(–t)≡ –(Nx)(t), ∀x ∈ Cm,π
 .

http://www.boundaryvalueproblems.com/content/2012/1/108
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Thus, the operator N sends Cm,π
 into C,π

 . Hence, the problem of odd anti-periodic
solutions for (.) is equivalent to the operator equation

Dx = λNx, x ∈ Cm+,π
 .

Our problem is reduced to construct one completely continuous operator Pλ which
sendsCm+,π

 intoCm+,π
 , such that the fixed points of operator P in some open bounded

set are the odd anti-periodic solutions of (.). With this in mind, let us define the set as
follows:

� =
{
x ∈ Cm+,π

 : ‖x‖Cm+ < T + 
}
.

Define the completely continuous operator Pλ :� –→ Cm+,π
 by

Pλx = JJ · · · JJ︸ ︷︷ ︸
m+

λNx = λD–
Nx, λ ∈ [, ].

The remainder of the proof work is quite similar to the proof of Theorem ., so we omit
the details. The proof is complete. �

When g(t,x) = g(x), we can remove the assumption (H) in Theorem ., Theorem .
and obtain the following results.

Theorem . Assume that

(H)
∑m

i= |ai| –  <  and the assumption (H) is true.

Then (.) (g(t,x) = g(x)) has at least one even anti-periodic solution.

Theorem . Suppose that the assumptions (H), (H) are true. Then (.) (g(t,x) = g(x))
has at least one odd anti-periodic solution.

Basing on the proof of Theorem  in [], for the possible anti-periodic solution x(t) of
(.) (g(t,x) = g(x)), the hypothesis (H) yields that there exists a prior bounds in Cm+,π ,
i.e., x(t) satisfies

‖x‖Cm+ ≤ T,

where T is a positive constant independent of λ. The remainder of the proof work of The-
orem . and Theorem . is quite similar to the proof of Theorem . and Theorem .,
so we omit the details.

4 Anti-periodic solutions with symmetry of (1.5)
In this section, we will give some existence results on anti-periodic solutions with sym-
metry of (.).

Theorem . Assume that

http://www.boundaryvalueproblems.com/content/2012/1/108
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(H) there exist non-negative functions α,β ∈ C(R,R+) such that

∣∣g(t,x)∣∣ ≤ α(t)|x|p– + β(t), ∀t,x ∈R;

(H) ‖α‖λ–(m+)
 –  <  and the assumption (H) is true.

Then (.) has at least one even anti-periodic solution.

Proof We consider the following homotopic equation of (.):

(
φp

(
x(m+)))(m+) = –λg(t,x) + λe(t), λ ∈ [, ]. (.)

Define the operator D :D(D)⊂ C,π
 –→ L([, π ],R) by

(Dx)(t) =
(
φp

(
x(m+)(t)

))(m+), ∀t ∈ R,

where

D(D) =
{
x ∈ Cm+,π

 :
(
φp

(
x(m+)(t)

))(m)

is absolutely continuous on R
}
.

Let N : C,π
 –→ L([, π ],R) be the Nemytskii operator

(Nx)(t) = –g
(
t,x(t)

)
+ e(t), ∀t ∈ R.

Obviously, the operator D is invertible and the problem of even anti-periodic solutions
for (.) is equivalent to the operator equation

Dx = λNx, x ∈D(D).

From hypotheses (H), (H) and (.) in [], for the possible even anti-periodic solution
x(t) of (.), there exists a prior bounds in C,π

 , i.e., x(t) satisfies

‖x‖C ≤ T,

where T is a positive constant independent of λ. So, our problem is reduced to con-
struct one completely continuous operator Qλ, which sends C,π

 into C,π
 , such that the

fixed points of operatorQ in some open bounded set are the even anti-periodic solutions
of (.).
With this in mind, let us define the set as follows:

� =
{
x ∈ C,π

 : ‖x‖C < T + 
}
.

By hypothesis (H), it is easy to see that

(Nx)(–t)≡ (Nx)(t), ∀x ∈ C,π
 .

http://www.boundaryvalueproblems.com/content/2012/1/108
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Hence, the operator N sends C,π
 into C,π

 . Define the completely continuous operator
Qλ :� –→ C,π

 by

Qλx = JJ · · · JJ︸ ︷︷ ︸
m+

φq JJ · · · JJ︸ ︷︷ ︸
m+

λNx

= φq(λ)D–
Nx, λ ∈ [, ] (ifm = n,n = , , . . .)

or

Qλx = JJ · · · JJ︸ ︷︷ ︸
m+

φq JJ · · · JJ︸ ︷︷ ︸
m+

λNx

= φq(λ)D–
Nx, λ ∈ [, ] (ifm = n – ,n = , , . . .).

The remainder of the proof work is quite similar to the proof of Theorem ., so we omit
the details. The proof is complete. �

Theorem . Suppose that the assumptions (H), (H), (H) are true. Then (.) has at
least one odd anti-periodic solution.

Proof We consider the homotopic equation (.) of (.). Define the operator D :
D(D) ⊂ C,π

 –→ L([, π ],R) by

(Dx)(t) =
(
φp

(
x(m+)(t)

))(m+), ∀t ∈R,

where

D(D) =
{
x ∈ Cm+,π

 :
(
φp

(
x(m+)(t)

))(m)

is absolutely continuous on R
}
.

Let N : C,π
 –→ L([, π ],R) be the Nemytskii operator

(Nx)(t) = –g
(
t,x(t)

)
+ e(t), ∀t ∈R.

Thus, the problem of odd anti-periodic solutions for (.) is equivalent to the operator
equation

Dx = λNx, x ∈D(D).

Our problem is reduced to construct one completely continuous operator Wλ, which
sends C,π

 into C,π
 , such that the fixed points of operatorW in some open bounded set

are the odd anti-periodic solutions of (.). With this in mind, let us define the following
set:

� =
{
x ∈ C,π

 : ‖x‖C < T + 
}
.

http://www.boundaryvalueproblems.com/content/2012/1/108
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By hypothesis (H), it is easy to see that

(Nx)(–t)≡ –(Nx)(t), ∀x ∈ C,π
 .

Hence, the operator N sends C,π
 into C,π

 . Define the completely continuous operator
Wλ :� –→ C,π

 by

Wλx = JJ · · · JJ︸ ︷︷ ︸
m+

φq JJ · · · JJ︸ ︷︷ ︸
m+

λNx

= φq(λ)D–
Nx, λ ∈ [, ] (ifm = n,n = , , . . .)

or

Wλx = JJ · · · JJ︸ ︷︷ ︸
m+

φq JJ · · · JJ︸ ︷︷ ︸
m+

λNx

= φq(λ)D–
Nx, λ ∈ [, ] (ifm = n – ,n = , , . . .).

The remainder of the proof work is quite similar to the proof of Theorem ., so we omit
the details. The proof is complete. �

Theorem . Assume that g(t,x) has the decomposition

g(t,x) = u(t,x) + v(t,x)

such that

(H) there exist non-negative constants γ , r with r > p, such that

(–)m+xu(t,x)≥ γ |x|r , ∀t,x ∈R;

(H) there are non-negative functions α,β ∈ C(R,R+) such that

∣∣v(t,x)∣∣ ≤ α(t)|x|r– + β(t), ∀t,x ∈R;

(H) ‖α‖ – γ ≤  and the assumption (H) is true.

Then (.) has at least one even anti-periodic solution.

Theorem . Suppose that the assumptions (H), (H), (H), (H) are true. Then (.)
has at least one odd anti-periodic solution.

Basing on the proof of Theorem . in [], for the possible anti-periodic solution x(t)
of (.), the hypotheses (H), (H), (H) yield that there exists a prior bounds in Cm+,π ,
i.e., x(t) satisfies

‖x‖C ≤ T,

http://www.boundaryvalueproblems.com/content/2012/1/108
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where T is a positive constant independent of λ. The remainder of the proof work of The-
orem . and Theorem . is quite similar to the proof of Theorem . and Theorem .,
so we omit the details.

Remark Assumptions (H), (H), (H) guarantee that the degree with respect to x of
g(t,x) is allowed to be greater than p – , which is different from the hypothesis (H) of
Theorem . and Theorem ..
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