1,011 research outputs found

    3D numerical simulation of slope-flexible system interaction using a mixed FEM-SPH model

    Get PDF
    Flexible membranes are light structures anchored to the ground that protect infrastructures or dwellings from rock or soil sliding. One alternative to design these structures is by using numerical simulations. However, very few models were found until date and most of them are in 2D and do not include all their components. This paper presents the development of a numerical model combining Finite Element Modelling (FEM) with Smooth Particle Hydrodynamics (SPH) formulation. Both cylindrical and spherical failure of the slope were simulated. One reference geometry of the slope was designed and a total of 21 slip circles were calculated considering different soil parameters, phreatic level position and drainage solutions. Four case studies were extracted from these scenarios and simulated using different dimensions of the components of the system. As a validation model, an experimental test that imitates the soil detachment and its retention by the steel membrane was successfully reproduced.The FORESEE project has received funding from the EuropeanUnion’s Horizon 2020 research and innovation program undergrant agreement No 769373

    The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis

    Get PDF
    A recombinant severe acute respiratory syndrome coronavirus (SARS-CoV) lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major determinant of virulence. Elimination of SARS-CoV E protein PBM by using reverse genetics caused a reduction in the deleterious exacerbation of the immune response triggered during infection with the parental virus and virus attenuation. Cellular protein syntenin was identified to bind the E protein PBM during SARS-CoV infection by using three complementary strategies, yeast two-hybrid, reciprocal coimmunoprecipitation and confocal microscopy assays. Syntenin redistributed from the nucleus to the cell cytoplasm during infection with viruses containing the E protein PBM, activating p38 MAPK and leading to the overexpression of inflammatory cytokines. Silencing of syntenin using siRNAs led to a decrease in p38 MAPK activation in SARS-CoV infected cells, further reinforcing their functional relationship. Active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM as compared with the parental virus, leading to a decreased expression of inflammatory cytokines and to virus attenuation. Interestingly, administration of a p38 MAPK inhibitor led to an increase in mice survival after infection with SARS-CoV, confirming the relevance of this pathway in SARS-CoV virulence. Therefore, the E protein PBM is a virulence domain that activates immunopathology most likely by using syntenin as a mediator of p38 MAPK induced inflammation

    3D numerical simulation of slope-flexible system interaction using a mixed FEM-SPH model

    Get PDF
    Flexible membranes are light structures anchored to the ground that protect infrastructures or dwellings from rock or soil sliding. One alternative to design these structures is by using numerical simulations. However, very few models were found until date and most of them are in 2D and do not include all their components. This paper presents the development of a numerical model combining Finite Element Modelling (FEM) with Smooth Particle Hydrodynamics (SPH) formulation. Both cylindrical and spherical failure of the slope were simulated. One reference geometry of the slope was designed and a total of 21 slip circles were calculated considering different soil parameters, phreatic level position and drainage solutions. Four case studies were extracted from these scenarios and simulated using different dimensions of the components of the system. As a validation model, an experimental test that imitates the soil detachment and its retention by the steel membrane was successfully reproduced

    Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis

    Get PDF
    Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence

    Analyzing hippocampal synaptic damage and glial response in a mouse model of tauopathy

    Get PDF
    Tau pathology is highly related to synaptic and neuronal loss, leading to cognitive decline and dementia in Alzheimer’s disease (AD) and other tauopathies. Tau transgenic mice are widely used to investigate the specific contribution of this protein to AD since they reproduce the synaptic and cognitive dysfunction in parallel to an age-dependent accumulation of hyperphosphorylated forms of tau (phospho-tau). The aim of this study was to investigate the progression of tau aggregation and analyze its relationship with microglial activation and synaptic damage within the hippocampus of a transgenic tau model. 2, 6, 9, 12 and 18 month-old THY-Tau22 transgenic and WT mice were analyzed. Tau pathology was assessed by western blotting and immunohistochemistry (AT8, AT100). Confocal microscopy was used to study microglial/phospho-tau relationship, and Thioflavin-S staining to evidence fibrillar aggregates. Levels of general (Synaptophysin) and subtype-specific (ChAT, VGAT, VGLUT-1) synaptic proteins were determined by WB and immunohistochemistry. Inflammatory markers were assessed by quantitative PCR (CD45, CD68, TREM2), immunohistochemistry (Iba-1) and image analysis. Tau pathology was detectable in the hippocampus from 2 months of age and increased progressively during aging. Presynaptic protein levels were significantly decreased from 9-12 months compared to age-matched WT mice. Even though some inflammatory markers were slightly increased in the hippocampus, microglial reactivity was found to be generally attenuated and some cells even exhibited reduction in their prolongations and a clear degenerative phenotype at advanced ages similar to that seen in the hippocampus of AD patients. Finally, this model could be a relevant tool to further understand the specific role of tau in both microglial response and synaptic pathology in AD.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Disentangling the contribution of tau and abeta pathologies in transgenic models of Alzheimer's disease

    Get PDF
    AIMS: Amyloid-beta (Abeta) deposits and intraneuronal hyperphosphorylated tau are major pathological hallmarks of Alzheimer’s disease (AD). The coexistence of these aggregates in AD brains leads to synaptic dysfunction, neuronal loss and cognitive decline. Failures in protein homeostasis, along with defective glial responses, have been identified as pathological mechanisms linked to this disorder. Thus, our main objective is to better understand the differential impact of Abeta- and tau-aggregates to these processes in the hippocampus of AD models. METHODS: We analyzed APP- (APPSL/PS1M146L) and Tau- (ThyTau22 and hP301S) based models from 2 to 18 months of age. Tau and Abeta pathologies were assessed by western blotting and immunohistochemistry. Confocal microscopy was used to study microglia/aggregates relationship. Levels of synaptic proteins, autophagy and inflammatory markers were determined by quantitative PCR, WB and immunohistochemistry. RESULTS: Tau and Abeta pathologies initiated as early as 2 months of age and increased progressively with aging. Even though only APP/PS1 hippocampus showed dystrophic neurites positive to proteostatic and presynaptic markers, their protein levels were altered in both types of models from 6-9 months compared to age-matched WT mice. Inflammatory markers and microglial reactivity were barely increased in the hippocampus of ThyTau mice in contrast to P301S and APP/PS1 mice which displayed a prominent microglial response. CONCLUSIONS: Clarifying the effects of Abeta and tau separately would indeed enable the development of novel therapeutic strategies and drugs targeting pathways related to these proteinopathies. Supported by grants FIS PI15/00796 and PI15/00957 co-financed by FEDER funds from European Union, by Junta de Andalucia Proyecto de Excelencia CTS385 2035 and by grant PPIT.UMA.B1/2017.26Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Intracoronary Administration of Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cells Improves Myocardial Perfusion But Not Left Ventricle Function, in a Translational Model of Acute Myocardial Infarction

    Get PDF
    Background-Autologous adipose tissue-derived mesenchymal stem cells (ATMSCs) therapy is a promising strategy to improve post-myocardial infarction outcomes. In a porcine model of acute myocardial infarction, we studied the long-term effects and the mechanisms involved in allogeneic ATMSCs administration on myocardial performance. Methods and Results-Thirty-eight pigs underwent 50 minutes of coronary occlusion; the study was completed in 33 pigs. After reperfusion, allogeneic ATMSCs or culture medium (vehicle) were intracoronarily administered. Follow-ups were performed at short (2 days after acute myocardial infarction vehicle-treated, n=10; ATMSCs-treated, n=9) or long term (60 days after acute myocardial infarction vehicle-treated, n=7; ATMSCs-treated, n=7). At short term, infarcted myocardium analysis showed reduced apoptosis in the ATMSCs-treated animals (48.6 +/- 6\% versus 55.9 +/- 5.7\% in vehicle; P=0.017); enhancement of the reparative process with up-regulated vascular endothelial growth factor, granulocyte macrophage colony-stimulating factor, and stromal-derived factor-1 alpha gene expression; and increased M2 macrophages (67.2 +/- 10\% versus 54.7 +/- 10.2\% in vehicle; P=0.016). In long-term groups, increase in myocardial perfusion at the anterior infarct border was observed both on day-7 and day-60 cardiac magnetic resonance studies in ATMSCs-treated animals, compared to vehicle (87.9 +/- 28.7 versus 57.4 +/- 17.7 mL/min per gram at 7 days; P=0.034 and 99 +/- 22.6 versus 43.3 +/- 14.7 22.6 mL/min per gram at 60 days; P=0.0001, respectively). At day 60, higher vascular density was detected at the border zone in the ATMSCs-treated animals (118 +/- 18 versus 92.4 +/- 24.3 vessels/mm(2) in vehicle; P=0.045). Cardiac magnetic resonance-measured left ventricular ejection fraction of left ventricular volumes was not different between groups at any time point. Conclusions-In this porcine acute myocardial infarction model, allogeneic ATMSCs-based therapy was associated with increased cardioprotective and reparative mechanisms and with better cardiac magnetic resonance-measured perfusion. No effect on left ventricular volumes or ejection fraction was observed.This work was supported by grants from Fundacion la Marato de TV3 (122230); Fondo de Investigacion Sanitaria Instituto de Salud Carlos III and Fondo Europeo de Desarrollo Regional (FIS PI14/01682), (RD12/0042/0006), (RD12/0042/0047), (RD12/0019/0029) (TerCel RD16/0011/0006), CIBER Cardiovascular (CB16/11/00403) projects and Ministerio de Educacion y Ciencia (SAF2011-30067-C02-01) (SAF2014-59892). Fernaandez-Jimenez was the recipient of nonoverlapping grants from the Ministerio de Economia, Industria, y Competitividad through the Instituto de Salud Carlos III (Rio Hortega fellowship); and the Fundacion Jesus Serra, the Fundacion Interhospitalaria de Investigacion Cardiovascular (FIC), and the CNIC (FICNIC fellowship). The use of QMass software was partly supported by a scientific collaboration between the CNIC and Medis Medical Imaging Systems BV. The CNIC is supported by the Ministerio de Economia, Industria, y Competitividad (MINECO) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505). This work was also funded by ``la Caixa Banking Foundation, and the Generalitat de Catalunya (SGR 2014, CERCA Programme). This work has been developed in the context of AdvanceCat with the support of ACCIO (Catalonia Trade \& Investment; Generalitat de Catalunya) under the Catalonian ERDF operational program (European Regional Development Fund) 2014-2020.S

    Quantitative detection of iodine in the stratosphere

    Get PDF
    Oceanic emissions of iodine destroy ozone, modify oxidative capacity, and can form new particles in the troposphere. However, the impact of iodine in the stratosphere is highly uncertain due to the lack of previous quantitative measurements. Here, we report quantitative measurements of iodine monoxide radicals and particulate iodine (Iy,part) from aircraft in the stratosphere. These measurements support that 0.77 ± 0.10 parts per trillion by volume (pptv) total inorganic iodine (Iy) is injected to the stratosphere. These high Iy amounts are indicative of active iodine recycling on ice in the upper troposphere (UT), support the upper end of recent Iy estimates (0 to 0.8 pptv) by the World Meteorological Organization, and are incompatible with zero stratospheric iodine injection. Gasphase iodine (Iy,gas) in the UT (0.67 ± 0.09 pptv) converts to Iy,part sharply near the tropopause. In the stratosphere, IO radicals remain detectable (0.06 ± 0.03 pptv), indicating persistent Iy,part recycling back to Iy,gas as a result of active multiphase chemistry. At the observed levels, iodine is responsible for 32% of the halogen-induced ozone loss (bromine 40%, chlorine 28%), due primarily to previously unconsidered heterogeneous chemistry. Anthropogenic (pollution) ozone has increased iodine emissions since preindustrial times (ca. factor of 3 since 1950) and could be partly responsible for the continued decrease of ozone in the lower stratosphere. Increasing iodine emissions have implications for ozone radiative forcing and possibly new particle formation near the tropopause.Fil: Koenig, Theodore K.. State University of Colorado at Boulder; Estados UnidosFil: Baidar, Sunil. State University of Colorado at Boulder; Estados UnidosFil: Campuzano Jost, Pedro. State University of Colorado at Boulder; Estados UnidosFil: Cuevas, Carlos Alberto. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Dix, Barbara. State University of Colorado at Boulder; Estados UnidosFil: Fernandez, Rafael Pedro. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Guo, Hongyu. State University of Colorado at Boulder; Estados UnidosFil: Hall, Samuel R.. National Center for Atmospheric Research; Estados UnidosFil: Kinnison, Douglas. National Center for Atmospheric Research; Estados UnidosFil: Nault, Benjamin A.. State University of Colorado at Boulder; Estados UnidosFil: Ullmann, Kirk. National Center for Atmospheric Research; Estados UnidosFil: Jimenez, Jose L.. State University of Colorado at Boulder; Estados UnidosFil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Volkamer, Rainer. State University of Colorado at Boulder; Estados Unido

    Multisensor experiments over vineyard: new challenges for the GNSS-R technique

    Get PDF
    An airborne campaign was performed during August, 2014 in an agricultural area in the Duero basin (Spain) in order to appraise the synergy between very different sources of Earth Observation imagery, and very different instruments for soil moisture retrieval. During the flight, an intensive field campaign comprising soil, plant and spectral measurements was carried out. An innovative sensor based on the Global Navigation Satellite Systems Reflectometry (GNSS-R) was on board the manned vehicle, the Light Airborne Reflectometer for GNSS-R Observations (LARGO) engineered by the Universitat Politècnica de Catalunya. While the synergy between thermal, optical and passive microwave spectra observations is well known for vegetation parameters and soil moisture retrievals, the experiment aimed to evaluate the synergy of GNSS-R reflectivity with a time-collocated Landsat 8 imagery for soil moisture retrieval under semiarid climatic conditions. LARGO estimates, field measurements, and optical, NIR, SWIR and thermal bands from Landsat 8 were compared. Results showed that the joint use of GNSS-R reflectivity with vegetation and water indices together with thermal maps from Landsat 8 thoroughly improved the soil moisture estimation.Peer ReviewedPostprint (published version

    Accuracy in Copy Number Calling by qPCR and PRT: A Matter of DNA

    Get PDF
    The possible implication of copy number variation (CNV) in the genetic susceptibility to human disease needs to be assessed using robust methods that can be applied at a population scale. In this report, we analyze the performance of the two major techniques, quantitative PCR (qPCR) and paralog ratio test (PRT), and investigate the influence of input DNA amount and template integrity on the reliability of both methods. Analysis of three genes (PRELID1, SYNPO and DEFB4) in a large sample set showed that both methods are prone to false copy number assignments if sufficient attention is not paid to DNA concentration and quality. Accurate normalization of samples is essential for reproducible qPCR because it avoids the effect of differential amplification efficiencies between target and control assays, whereas PRT is generally more sensitive to template degradation due to the fact that longer amplicons are usually needed to optimize sensitivity and specificity of paralog sequence PCR. The use of normalized, high quality genomic DNA yields comparable results with both methods
    corecore