87 research outputs found

    Why has it been so difficult to prove the efficacy of alpha-1-antitrypsin replacement therapy? Insights from the study of disease pathogenesis

    Get PDF
    Alpha-1-antitrypsin is the most abundant circulating protease inhibitor. It is mainly produced by the liver and secreted into the circulation where it acts to prevent excessive proteolytic damage in the lungs by the enzyme neutrophil elastase. The most common severe deficiency allele is the Z mutation, which causes the protein to self-associate into ordered polymers. These polymers accumulate within hepatocytes to cause liver damage. The resulting lack of circulating α1-antitrypsin predisposes the Z homozygote to proteolytic lung damage and emphysema. Other pathways may also contribute to the development of lung disease. In particular, polymers of Z α1-antitrypsin can form within the lung where they act as a pro-inflammatory stimulus that may exacerbate protease-mediated lung damage. Researchers recognized in the 1980s that plasma α1-antitrypsin levels could be restored by intravenous infusions of purified human protein. Alpha-1-antitrypsin replacement therapy was introduced in 1987 but subsequent clinical trials have produced conflicting results, and to date there remains no widely accepted clinical evidence of the efficacy of α1-antitrypsin replacement therapy. This review addresses our current understanding of disease pathogenesis in α1-antitrypsin deficiency and questions why this treatment in isolation may not be effective. In particular it discusses the possible role of α1-antitrypsin polymers in exacerbating intrapulmonary inflammation and attenuating the efficacy of α1-antitrypsin replacement therapy

    A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity.

    Get PDF
    Mutant Z α1-antitrypsin (E342K) accumulates as polymers within the endoplasmic reticulum (ER) of hepatocytes predisposing to liver disease, whereas low levels of circulating Z α1-antitrypsin lead to emphysema by loss of inhibition of neutrophil elastase. The ideal therapy should prevent polymer formation while preserving inhibitory activity. Here we used mAb technology to identify interactors with Z α1-antitrypsin that comply with both requirements. We report the generation of an mAb (4B12) that blocked α1-antitrypsin polymerization in vitro at a 1:1 molar ratio, causing a small increase of the stoichiometry of inhibition for neutrophil elastase. A single-chain variable fragment (scFv) intrabody was generated based on the sequence of mAb4B12. The expression of scFv4B12 within the ER (scFv4B12KDEL) and along the secretory pathway (scFv4B12) reduced the intracellular polymerization of Z α1-antitrypsin by 60%. The scFv4B12 intrabody also increased the secretion of Z α1-antitrypsin that retained inhibitory activity against neutrophil elastase. MAb4B12 recognized a discontinuous epitope probably located in the region of helices A/C/G/H/I and seems to act by altering protein dynamics rather than binding preferentially to the native state. This novel approach could reveal new target sites for small-molecule intervention that may block the transition to aberrant polymers without compromising the inhibitory activity of Z α1-antitrypsin

    The integrated stress response regulates BMP signalling through effects on translation.

    No full text
    BACKGROUND: Developmental pathways must be responsive to the environment. Phosphorylation of eIF2α enables a family of stress-sensing kinases to trigger the integrated stress response (ISR), which has pro-survival and developmental consequences. Bone morphogenetic proteins (BMPs) regulate multiple developmental processes in organisms from insects to mammals. RESULTS: Here we show in Drosophila that GCN2 antagonises BMP signalling through direct effects on translation and indirectly via the transcription factor crc (dATF4). Expression of a constitutively active GCN2 or loss of the eIF2α phosphatase dPPP1R15 impairs developmental BMP signalling in flies. In cells, inhibition of translation by GCN2 blocks downstream BMP signalling. Moreover, loss of d4E-BP, a target of crc, augments BMP signalling in vitro and rescues tissue development in vivo. CONCLUSION: These results identify a novel mechanism by which the ISR modulates BMP signalling during development

    The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α1-antitrypsin.

    Get PDF
    α1-Antitrypsin is a serine protease inhibitor produced in the liver that is responsible for the regulation of pulmonary inflammation. The commonest pathogenic gene mutation yields Z-α1-antitrypsin, which has a propensity to self-associate forming polymers that become trapped in inclusions of endoplasmic reticulum (ER). It is unclear whether these inclusions are connected to the main ER network in Z-α1-antitrypsin-expressing cells. Using live cell imaging, we found that despite inclusions containing an immobile matrix of polymeric α1-antitrypsin, small ER resident proteins can diffuse freely within them. Inclusions have many features to suggest they represent fragmented ER, and some are physically separated from the tubular ER network, yet we observed cargo to be transported between them in a cytosol-dependent fashion that is sensitive to N-ethylmaleimide and dependent on Sar1 and sec22B. We conclude that protein recycling occurs between ER inclusions despite their physical separation.-Dickens, J. A., Ordóñez, A., Chambers, J. E., Beckett, A. J., Patel, V., Malzer, E., Dominicus, C. S., Bradley, J., Peden, A. A., Prior, I. A., Lomas, D. A., Marciniak, S. J. The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α1-antitrypsin.J.A.D. was funded by a Medical Research Council (MRC) Clinical Research Training Fellowship and a starter grant from the Academy of Medical Sciences; S.J.M. is a MRC Senior Clinical Research Fellow. D.A.L. is funded by the MRC and by the University College London Hospitals National Institute for Health Research (NIHR) Biomedical Research Centre (London, United Kingdom), and is an NIHR Senior Investigator. The work was also supported by the Alpha1 Foundation. The Cambridge Institute for Medical Research microscopy core facility is supported by a Wellcome Trust Strategic Award (100140) and a Wellcome Trust equipment grant (093026).This is the final version of the article. It first appeared from the Federation of American Societies for Experimental Biology via https://doi.org/10.1096/fj.201600430

    Assessment of second-line antiretroviral regimens for HIV therapy in Africa.

    Get PDF
    BACKGROUND: The efficacy and toxic effects of nucleoside reverse-transcriptase inhibitors (NRTIs) are uncertain when these agents are used with a protease inhibitor in second-line therapy for human immunodeficiency virus (HIV) infection in resource-limited settings. Removing the NRTIs or replacing them with raltegravir may provide a benefit. METHODS: In this open-label trial in sub-Saharan Africa, we randomly assigned 1277 adults and adolescents with HIV infection and first-line treatment failure to receive a ritonavir-boosted protease inhibitor (lopinavir-ritonavir) plus clinician-selected NRTIs (NRTI group, 426 patients), a protease inhibitor plus raltegravir in a superiority comparison (raltegravir group, 433 patients), or protease-inhibitor monotherapy after 12 weeks of induction therapy with raltegravir in a noninferiority comparison (monotherapy group, 418 patients). The primary composite end point, good HIV disease control, was defined as survival with no new World Health Organization stage 4 events, a CD4+ count of more than 250 cells per cubic millimeter, and a viral load of less than 10,000 copies per milliliter or 10,000 copies or more with no protease resistance mutations at week 96 and was analyzed with the use of imputation of data (≤4%). RESULTS: Good HIV disease control was achieved in 60% of the patients (mean, 255 patients) in the NRTI group, 64% of the patients (mean, 277) in the raltegravir group (P=0.21 for the comparison with the NRTI group; superiority of raltegravir not shown), and 55% of the patients (mean, 232) in the monotherapy group (noninferiority of monotherapy not shown, based on a 10-percentage-point margin). There was no significant difference in rates of grade 3 or 4 adverse events among the three groups (P=0.82). The viral load was less than 400 copies per milliliter in 86% of patients in the NRTI group, 86% in the raltegravir group (P=0.97), and 61% in the monotherapy group (P<0.001). CONCLUSIONS: When given with a protease inhibitor in second-line therapy, NRTIs retained substantial virologic activity without evidence of increased toxicity, and there was no advantage to replacing them with raltegravir. Virologic control was inferior with protease-inhibitor monotherapy. (Funded by European and Developing Countries Clinical Trials Partnership and others; EARNEST Current Controlled Trials number, ISRCTN37737787, and ClinicalTrials.gov number, NCT00988039.)

    Increased ERK signalling promotes inflammatory signalling in primary airway epithelial cells expressing Z α1-antitrypsin.

    Get PDF
    Overexpression of Z α1-antitrypsin is known to induce polymer formation, prime the cells for endoplasmic reticulum stress and initiate nuclear factor kappa B (NF-κB) signalling. However, whether endogenous expression in primary bronchial epithelial cells has similar consequences remains unclear. Moreover, the mechanism of NF-κB activation has not yet been elucidated. Here, we report excessive NF-κB signalling in resting primary bronchial epithelial cells from ZZ patients compared with wild-type (MM) controls, and this appears to be mediated by mitogen-activated protein/extracellular signal-regulated kinase, EGF receptor and ADAM17 activity. Moreover, we show that rather than being a response to protein polymers, NF-κB signalling in airway-derived cells represents a loss of anti-inflammatory signalling by M α1-antitrypsin. Treatment of ZZ primary bronchial epithelial cells with purified plasma M α1-antitrypsin attenuates this inflammatory response, opening up new therapeutic options to modulate airway inflammation in the lung

    eIF4A2 drives repression of translation at initiation by Ccr4-Not through purine-rich motifs in the 5'UTR

    Get PDF
    Background: Regulation of the mRNA life cycle is central to gene expression control and determination of cell fate. miRNAs represent a critical mRNA regulatory mechanism, but despite decades of research, their mode of action is still not fully understood. Results: Here, we show that eIF4A2 is a major effector of the repressive miRNA pathway functioning via the Ccr4-Not complex. We demonstrate that while DDX6 interacts with Ccr4-Not, its effects in the mechanism are not as pronounced. Through its interaction with the Ccr4-Not complex, eIF4A2 represses mRNAs at translation initiation. We show evidence that native eIF4A2 has similar RNA selectivity to chemically inhibited eIF4A1. eIF4A2 exerts its repressive effect by binding purine-rich motifs which are enriched in the 5′UTR of target mRNAs directly upstream of the AUG start codon. Conclusions: Our data support a model whereby purine motifs towards the 3′ end of the 5′UTR are associated with increased ribosome occupancy and possible uORF activation upon eIF4A2 binding
    corecore