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ABSTRACT Mutant Z a1-antitrypsin (E342K) accumu-
lates as polymerswithin the endoplasmic reticulum(ER)of
hepatocytes predisposing to liver disease, whereas low
levels of circulating Za1-antitrypsin lead to emphysema by
loss of inhibition of neutrophil elastase. The ideal therapy
should prevent polymer formation while preserving in-
hibitory activity. Here we used mAb technology to identify
interactors with Z a1-antitrypsin that comply with both
requirements. We report the generation of anmAb (4B12)
that blocked a1-antitrypsin polymerization in vitro at a 1:1
molar ratio, causing a small increase of the stoichiometry
of inhibition forneutrophil elastase.A single-chain variable
fragment (scFv) intrabody was generated based on the se-
quence of mAb4B12. The expression of scFv4B12 within
the ER (scFv4B12KDEL) and along the secretory pathway
(scFv4B12) reduced the intracellular polymerization of
Z a1-antitrypsin by 60%. The scFv4B12 intrabody also
increased the secretion of Z a1-antitrypsin that retained
inhibitory activity against neutrophil elastase. MAb4B12
recognizedadiscontinuousepitopeprobably located in the
region of helices A/C/G/H/I and seems to act by altering
protein dynamics rather than binding preferentially to the
native state. This novel approach could reveal new target
sites for small-molecule intervention that may block the
transition to aberrant polymers without compromising
the inhibitory activity of Z a1-antitrypsin.—Ordóñez, A.,
Pérez, J., Tan, L., Dickens, J. A., Motamedi-Shad, N.,
Irving, J. A., Haq, I., Ekeowa, U., Marciniak, S. J., Miranda,
E., Lomas,D.A.A single-chain variable fragment intrabody
prevents intracellular polymerization of Z a1-antitrypsin
while allowing its antiproteinase activity. FASEB J.
29, 2667–2678 (2015). www.fasebj.org
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a1-ANTITRYPSIN DEFICIENCY is characterized by the accumula-
tion of ordered polymers of mutant a1-antitrypsin within
the endoplasmic reticulum (ER) of hepatocytes (1). The
resulting inclusions cause a toxic gain of function that is
associated with liver damage, whereas the plasma defi-
ciency predisposes to early-onset lung emphysema caused
by the loss of protease inhibition for several serine pro-
teases, particularly neutrophil elastase (2, 3). The most
commoncauseofa1-antitrypsindeficiency is homozygosity
for the Z allele (E342K), which results in almost 90%of the
synthesized a1-antitrypsin being degraded or retained as
polymers within the ER of hepatocytes (1). Preventing the
polymerization of Z a1-antitrypsin is an important thera-
peutic goal, but strategies that achieve this while abolishing
its inhibitory activity would exacerbate lung disease in
individualswitha1-antitrypsindeficiency.a1-Antitrypsin, as
other members of the serine proteinase inhibitor (serpin)
superfamily, exerts its antiproteinase activity by a unique
mechanism (4, 5) involving amobile and exposed reactive
center loop (RCL). Binding of the target proteinase to the
serpin (e.g., neutrophil elastase to a1-antitrypsin) cleaves
the serpin at a precise position within the RCL. As a result,
theRCL inserts intob-sheetAbecoming strand4A, and the
proteinase translocates to the lower pole of the 1:1 enzyme:

Abbreviations: ER, endoplasmic reticulum; GFP, green
fluorescent protein; HNE, human neutrophil elastase; HRP,
horseradish peroxidase; pCMV, cytomegalovirus promoter;
RCL, reactive center loop; RMSD, root mean square de-
viation; scFv, single-chain variable fragment; VH, variable
heavy chain; VL, variable light chain

1 These authors contributed equally to this work.
2 These authors contributed equally to this work.
3 Correspondence: E.M.: Department of Biology and Bio-

technologies, “Charles Darwin,” and Pasteur Institute, Cenci
Bolognetti Foundation, Sapienza University of Rome, P.le
AldoMoro 5, Rome 00185, Italy. E-mail: mariaelena.mirandabanos@
uniroma1.it; D.A.L.: University College London, 1st Floor Maple
House, 149, Tottenham Court Rd., London W1T 7NF, United
Kingdom. E-mail: d.lomas@ucl.ac.uk
This is an Open Access article distributed under the terms

of the Creative Commons Attribution 4.0 International (CC
BY 4.0) (http://creativecommons.org/licenses/by/4.0/) which
permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
doi: 10.1096/fj.14-267351
This article includes supplemental data. Please visit http://

www.fasebj.org to obtain this information.

0892-6638/15/0029-2667 © The Author(s) 2667

Downloaded from www.fasebj.org by (5.69.44.37) on March 03, 2018. The FASEB Journal Vol. 29, No. 6, pp. 2667-2678.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/157857763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.fasebj.org
mailto:mariaelena.mirandabanos@uniroma1.it
mailto:mariaelena.mirandabanos@uniroma1.it
mailto:d.lomas@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://www.fasebj.org
http://www.fasebj.org


inhibitor complex. Critically, insertion of the RCL into
b-sheetA is alsonecessary for serpinpolymerization(1,6,7).

The last decade has seen the development of dif-
ferent strategies to prevent the polymerization of Z a1-
antitrypsin, aimed to therapeutic interventions. Threemain
approaches have been investigated: chemical chaper-
ones (8–10), peptide analogs of the RCL (11–13), and
small compounds to prevent the conformational transi-
tion that underlies polymer formation (14). Several in
vitro studies have shown that peptide analogs of the RCL
are able to block the in vitro polymerization of Z a1-anti-
trypsin but result in the loss of inhibitory activity (12, 13),
whereas others have evaluated the effects of chemical
chaperones or small molecules on Z a1-antitrypsin se-
cretion in cell models or in vivo, without evidence of the
functional activity of the secreted protein (8, 14). Finding
a molecule that binds to a1-antitrypsin and prevents
polymer formation while retaining antiproteinase func-
tionality has thus become an important aim of the field.

Over the last few years, intracellularly expressed antibody
fragments (intrabodies) have emerged as a powerful ap-
proach to modulate the function of targets in different in-
tracellular compartments (15).Themost common intrabody
structure is the single-chain variable fragment (scFv), com-
posed of 1 heavy and 1 light variable domains (VH and VL,
respectively) linked by the (Gly4Ser)3 synthetic flexible pep-
tide. The scFv is the smallest fragment of an antibody capable
ofmaintaining the antigen-binding specificity, with excellent
properties of solubility, stability, and expression in mamma-
lian cells (16). They can be targeted to subcellular compart-
ments by incorporating trafficking signals specific for theER,
cytosol, nucleus, lysosomes, or mitochondria (17). Intra-
bodieshavebeenused as researchand therapeutic agents for
a variety of protein conformational pathologies such as Alz-
heimer’s, Parkinson’s, and Huntington’s diseases and the
prion encephalopathies (18), which share the feature of
protein misfolding and accumulation with a1-antitrypsin
deficiency and other serpinopathies (2).

Here we decided to take advantage of mAb technology
to identify an interaction with Z a1-antitrypsin in which
a ligand blocks polymer formation without compromising
inhibitoryactivity.Wereport theproductionofanovelanti-Z
a1-antitrypsin mAb, 4B12, able to block the polymeriza-
tion of a1-antitrypsin in vitro while allowing the protein to
retain inhibitory activity. Furthermore, we present the de-
velopment of the scFv4B12 intrabody that greatly reduced
the transition ofmonomeric Z a1-antitrypsin to pathologic
polymers within the crowded environment of the ER in
a cell model of disease. This intrabody increased the se-
cretion of Z a1-antitrypsin while allowing its proteinase
inhibitor activity. As the epitope is discontinuous and
present in native, loop-inserted, and polymeric forms of
the protein, the intrabody most likely acts by reducing the
conformational dynamics of the protein rather than pref-
erentially stabilizing one conformation over another.

MATERIALS AND METHODS

Mouse immunization, production of monoclonal antibodies,
and ELISA assays

BALB/Cmice were immunized withmonomeric Za1-antitrypsin
purified from the plasma of a PI*ZZ homozygote, and the

production of hybridoma was carried out as described previously
(19). Hybridoma clones were first screened against purified mo-
nomeric Z a1-antitrypsin and then for their ability to block Z a1-
antitrypsin polymerization. Selected hybridoma cells were sub-
clonedby limitingdilutionandexpandedas cell lines.The resulting
antibodies were characterized by ELISA assays as described pre-
viously (20). Briefly for (1) antigen-mediated ELISA, plates were
coated with purified antigen proteins (monomer and polymer Z
a1-antitrypsin) at 4mg/ml, followed by incubationwith hybridoma
culturemediaandwitha rabbit anti-mousehorseradishperoxidase
(HRP; Sigma-Aldrich, Dorset, United Kingdom); for (2) 2C1-
antigen-9C5-HRP sandwich ELISA, plates were coated with our
mouse monoclonal antibody specific for a1-antitrypsin polymers
(mAb2C1) (20) at 2mg/ml, followed by incubation with unknown
samples and with mAb 9C5-HRP (0.2 mg/ml) (20); for (3) com-
petitive ELISA, plates were coated with the antigen protein at
4 mg/ml and mAbs to be tested were serially diluted followed by
incubationwithmAb9C5-HRP(0.2mg/ml); and(4)a1-antitrypsin
sandwich ELISA was performed as previously described (19, 20)
using either our mAb3C11 (for total a1-antitrypsin) or mAb2C1
(for a1-antitrypsin polymers) as detection antibodies.

Purification of mAb and Fab production

The full-length antibody was purified from hybridoma cell su-
pernatant by using HiTrap Protein G Sepharose columns (GE
Healthcare Life Sciences, Waukesha, WI, USA). The Fab frag-
mentwas producedusing thePierceMouse IgG1FabandF(ab9)2
Preparation Kit (Life Technologies, Rockford, IL, USA).

Inhibitory activity of a1-antitrypsin

The stoichiometry of inhibition of M (wild-type) or Z variants of
a1-antitrypsin with human neutrophil elastase (HNE; Millipore,
Billerica, MA, USA) was determined as described previously (21)
in the presence/absence of an 8-fold molar excess of mAb4B12
(preincubated for 10 minutes) in 50 mM Tris, 0.5 M NaCl, and
0.25Msucrose, pH7.4, andwith 500mMsubstrate.All values were
normalized to the M a1-antitrypsin control.

Formation of complexes with human neutrophil elastase

Complex formation with HNE (Calbiochem, Darmstadt,
Germany) was evaluated in fetal bovine serum-free culture
medium. Twenty microliters of culture medium was incubated
for 45 minutes at 37°C with 10 ng HNE dissolved in 50 mM Tris
buffer, pH 8.00. Adding 5 ml 23 SDS loading buffer stopped the
reaction, and samples were analyzed by SDS-PAGE and immuno-
blotted for a1-antitrypsin.

Determination of the scFv sequences and construction of
pCMV/scFv/myc/ER mammalian expression vectors

The scFv9C5 and scFv4B12 constructs were produced frommouse
mAbs (both IgG1 k isotype) against Z a1-antitrypsin. The sequen-
ces for VH and VL were determined as previously described (22).
Primers to amplify the VH and VL regions were selected from the
framework 1 region for VH and VL for the 59 end and the constant
regions for the 39 end (23). Isolated heavy chains and light chains
were cloned into pCR2.1 vector (Promega, Madison, WI, USA),
andmultiple cloneswere sequenced to identify the uniqueVH and
VL sequences. Purified PCR products for the VH and VL were then
linkedwith aflexible linker (Gly4Ser)3 by a 2-stepoverlappingPCR
to produce the assembled scFv fragment. scFv4B12 was generated
as an in silico sequence (with the sameGly-Ser linker and restriction
sites) and purchased as a synthetic cDNA cloned into the pJ204
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housekeeping plasmid (DNA2.0, Menlo Park, CA, USA). Both
scFv9C5 and scFv4B12 were ligated into the cytomegalovirus
promoter (pCMV)/myc/ER plasmid (pShooter; Invitrogen, Life
Technologies, Carlsbad, CA, USA). The resulting scFv intrabodies
contained theERsignalpeptide,VH, interchain linker,VL,myc-tag,
and the ER retention (KDEL) sequences. pCMV/scFv4B12/
myc/ER (scFv4B12KDEL) was used as template to generate the
pCMV/scFv4B12/myc (scFv4B12) without the ER retention
sequence by site-directed mutagenesis (Agilent Technologies;
Stratagen, La Jolla, CA, USA). The final constructs were con-
firmed by DNA sequencing. A full list of oligonucleotides used
for cloning is included in Table 1.

COS-7 cell culture, intrabody transfections, and analysis

COS-7 cells were maintained as previously described (24) and
cotransfected with 1.5 mg of pcDNA3.1(+)-Z a1-antitrypsin and
2.5mg of scFv intrabodies using Lipofectamine 2000 (Invitrogen,
Life Technologies). Cell lysates, SDS- and nondenaturing PAGE,
immunoblotting, metabolic labeling, and immunoprecipitation
and immunofluorescence analysis were performed as detailed
previously (25). Antibodies and reagents used were as follows:
anti-a1-antitrypsin monoclonal antibody (Abcam, Cambridge,
United Kingdom), anti-myc-tag polyclonal antibody (Abcam),
anti-KDEL antibody (Cell Signaling Technology, Danvers, MA,
USA), anti- glyceraldehyde 3-phosphate dehydrogenase poly-
clonal antibody (Cell Signaling Technology), bafilomycin A1
(Sigma-Aldrich), an inhibitor of the V-ATPase essential for auto-
phagosomematuration, and lactacystin (Calbiochem, SanDiego,
CA, USA), an irreversible proteasome inhibitor.

Structural comparison

mAb4B12 recognizes an epitope common to native (Protein
Data Bank ID code 1QLP), cleaved (Protein Data Bank ID code
1EZX), and latent (Protein Data Bank ID code 1IZ2) confor-
mations, with candidate regions identified as follows: (1) surface-
exposed residues rn (solvent-accessible surface area . 10 Å2)
were identified using DSSP (26); (2) for the Ca atom of each rn,
an epitope-sized patch Pn of all surface residues with $1 side-
chain atom within an 8 Å radius was identified; (3) for each patch
Pn, a least-squares superpositionwasperformedbetweenstructures
in pairs (Si,j) using LSQKAB (27) and the root mean square de-
viation (RMSD) between backbone atoms RMSD(Pn,Si,j) calcu-
lated (deviations . 4.8 Å were treated as 4.8 Å). Any Pn with ,3
aminoacids,more thanhalf of thepositionsdisplacedby.4.8Å, or
overlappingwith a knownglycosylation sitewas noted; (4) for each
pair Si,j of structures, RMSD(Pr,Si,j) values were normalized giving

0# nRMSD(Pn,Si,j)# 1; and (5) the final value for each patch Pn
was reported at central residue r as the average nRMSD(Pn,Si,j).

Statistical analysis

Statistical analysis by ANOVA, with a Bonferroni post hoc test or
Student t test where appropriate, was performed using the
GraphPad Prism program (GraphPad Software, La Jolla, CA,
USA). Statistically significant changes (P, 0.05) are indicated.

RESULTS

Development of mAbs that interfere with the
polymerization of Z a1-antitrypsin

Three cell fusions were performed as described previously
(19), and the resulting hybridoma cells (;2500 wells)
were screened for the presence of antibodies against Z a1-
antitrypsin by antigen-mediated ELISA. Seventy positive
wells were subjected to a secondary screening formAbs able
to modify the polymerization of Z a1-antitrypsin. Polymer
formation was quantified by sandwich ELISA using our 2C1
polymer-specificmAb(20)(Fig.1A).Theabilityofcandidate
mAbs to block heat-induced polymerization was assessed
by incubating Z a1-antitrypsin at concentrations similar to
that expected for antibodies in a hybridoma supernatant
(10–200 mg/ml) and temperatures that could drive poly-
merization while allowing antibody-antigen interaction
(40–50°C). The final assay was performed using 20 mg/ml
Z a1-antitrypsin, heated at 45°C for 45 hours (Fig. 1B). The
fetal bovine serum contained in the media supernatant in-
terfered with our assay by reducing polymerization (data not
shown), and therefore each candidate antibody was purified
and testedasapure IgGreagent (Fig. 1C).MostmAbsdidnot
modifyZa1-antitrypsinpolymerization toanyrelevantextent.
Oneof themcaused an increase inpolymer signal (5E3), 3 of
them caused a mild decrease in polymer signal (5E4, 1D6,
and8E2), and2of themcaused a strongdecrease inpolymer
signal (4B12 and 3C4). These 2 antibodies were assessed in
a competitiveELISAagainstmAb9C5-HRP toensure that the
reduction in signal was not caused by interference of the
candidate mAb with the detection antibody. MAb3C4 com-
peted the binding of 9C5-HRP to preformedZa1-antitrypsin
polymers (Fig. 1D), so it was discarded from our studies,
whereas mAb4B12 showed no interference with polymer
detection.

TABLE 1. Oligonucleotides primers used for cloning in this study

Targeted sequence

Primer sequence

Forward Reverse

Heavy chain
(9C5/4B12)

59 CTTCCGGAATTCSARGTNMAGCTGSAGSAGTC 39 59GGAAGATCTATAGACAGATGGGGTGTCGTTTTGGC 39

Light chain
(9C5/4B12)

59 GGGAGCTCGAYATTGTGMTSACMCARWCTMCA 39 59 GGTGCATGCGATACAGTTGGTGCAGCATC 39

VH9C5 59 CAACTGCAGCTCGAGCAGGTGCAGCTGCAGCAG
TCAGGGG 39

59 CTGAGGAGACGGTGACTGAGGTTCCTT 39

VL9C5 59 CGATATTGTGATCACCCAGACTCCAAA 39 59 TTTGATGCGGCCGCGTTTCAGCTCCAGCTTGGTCCCAG 39

The same primer pairs were selected for PCR amplification of the mouse immunoglobulin heavy and light chains genes for both 9C5 and
4B12 mAbs. Highly degenerate primers were used for 59 primers (S = G/C, R = A/G, N = A/C/G/T, M = A/C, and W = A/T). Specific primers for
the amplification of the variable domains of the heavy and light chain (VH and VL) for mAb9C5 are also shown. The underlined letters represent
the cloning sites XhoI (ctcgag) and NotI (gcggccgc).
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Full-length and Fab region of mAb4B12 block the
polymerization of Z a1-antitrypsin in vitro

The ability of the purified full-length 4B12 IgG to block
polymerization was further assessed by nondenaturing
PAGE (Fig. 2A). mAb4B12 completely blocked heat-
induced polymerization of Z a1-antitrypsin at a 1:1 molar
ratio in vitro (lane 4), and the effect gradually decreased
(polymerization increased, lanes 5–8) when the concen-
tration of mAb4B12 was reduced. A specific 2C1 sandwich

ELISA was used to quantify this effect with the same
results (Fig. 2A, right). Similar data were obtained with
the 4B12 Fab region (antigen-binding fragment), par-
ticularly at 1:1 molar ratio (Fig. 2B). An isotype-matching
mouse IgG control (IgG1) had no effects on polymeri-
zation in the same conditions (Fig. 2C), supporting the
specific blocking effect of mAb4B12. These results dem-
onstrate that mAb4B12 is able to bind Z a1-antitrypsin
and block its heat-induced polymerization at a 1:1 molar
ratio in vitro.
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Figure 2. Polymerization blocking activity of the 4B12 monoclonal antibody. A) Nondenaturing PAGE followed by silver staining
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(0.063 mg/ml) at 45°C for 60 hours. Right) ELISA quantification of a1-antitrypsin polymers by sandwich ELISA (2C1-Ag-9C5-HRP)
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Identification of the scFv sequences for mAbs 4B12
and 9C5 and construction of intrabodies

The striking polymer-blocking properties of mAb4B12 in
vitro encouraged us to evaluate the effect of this antibody in
a cell model of disease. To this end, we generated the scFv,
composed of the VH and VL domains joined by a flexible
linker (Gly4Ser)3 (Fig. 3A, B). Twohybridoma cell lines were
used as the source of RNA for scFv design: cells producing
mAb4B12andmAb9C5, anantibody againstZa1-antitrypsin
polymers that recognizes all conformers of a1-antitrypsin
(20)but thatdoesnotblockpolymer formation,usedhereas

a negative control. The unique cDNA sequence for the var-
iabledomains (VHandVL)containing thecomplementarity-
determining regions (hypervariable domains) responsible
for antigen binding were identified by comparison of
multiple sequenced clones to the mouse IG set from
the ImMunoGeneTics information system for V-QUEry
and STandardization (IMGT/V-QUEST) reference di-
rectory (28) (Fig. 3C). The resulting scFv4B12 and scFv9C5
constructs were sequenced, revealing a 750 bp open read-
ing frame full-length cDNA, encoding a 244 amino acid
protein with an estimated molecular weight of 27 kDa
(Supplemental Fig. S1).

Figure 3. Construction of the scFv9C5 and scFv4B12 intrabodies. A) Representation of a whole antibody. Antigen specificity is
defined by the Fab, composed of one constant (C) and one variable (V) domain of each of the heavy (H) and light (L) chains.
The shortest variable-region fragment is called Fv. Schema of a single-chain variable fragment (scFv). CDR1–3 denotes
complementarity-determining regions. B) Schema of the intrabody-encoding plasmids: 2 based on the mAb9C5 or mAb4B12
sequences with a myc epitope tag to facilitate detection and an ER retention signal (KDEL) (scFv9C5KDEL and scFv4B12KDEL),
and a third construct based on mAb4B12 but without the ER retention signal (scFv4B12). The GFPKDEL vector expressed
a nonrelated protein targeted to the ER. ERsp denotes ER signal peptide. C) Representative alignment of the DNA sequences of
several clones for identifying the light chain sequence of mAb4B12. The frameworks regions (FR) and complementary regions
(CDR) are indicated.
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The Z (E342K) variant of a1-antitrypsin forms ordered
polymers and intracellular inclusions that result in gross
changes in the luminal environmentof theER(25).To test
the efficacy of the scFv in this pathologically relevant con-
text, the scFv-encoding sequences were cloned into an ER-
targeting pCMV/ERmammalian expression vector, which
contained the ER signal peptide and a KDEL-ER retention
sequence.The3 intrabodies generatedare shown inFig. 3B.
Two were based onmAb9C5 (scFv9C5KDEL) andmAb4B12
(scFv4B12KDEL), containing the KDEL sequence. Previous
reports have shown that intrabodies retained within the
ER by the KDEL sequence are not secreted (29) and act as
intracellular anchors preventing the secretion of the target
proteins (30). Therefore, we also generated an intrabody
based on mAb4B12 without the KDEL sequence
(scFv4B12), which should allow normal trafficking of
a1-antitrypsin.Themycepitopeand theERretention signal
added ;5 kDa, so the expected size of the intrabodies

was approximately 32 kDa. A green fluorescent protein
(GFP)KDEL vector (Invitrogen,Carlsbad, CA,USA)was used
as an additional negative control.

Efficient expression of intrabodies within the
secretory pathway

Wehavepreviously shown that polymers of Za1-antitrypsin
accumulate within the ER of COS-7 cells, reproducing the
secretory defects seen in patients (20). Hence, we decided to
use thismodel systemtoevaluate thecorrectexpressionof the
different intrabodies. COS-7 cells were transfected with Z a1-
antitrypsin or each intrabody and after 24 hours were pulse-
labeled with [35S]-Met/Cyst. Protein expression levels were
determined by immunoprecipitation with either an anti-
body against all conformers of a1-antitrypsin or against the
myc-tag for the intrabodies (Fig. 4A). As expected, a 52 kDa
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band was detected for a1-antitrypsin (lane 2), and bands
of;32kDaweredetected incells expressing scFv4B12KDEL,
scFv4B12, and scFv9C5KDEL (lanes 3–5). The slightly faster
migration of scFv4B12 and scFv9C5KDEL compared with
scFv4B12KDEL (Fig. 4A; lanes 4 and 5 vs. lane 3) was in
agreement with their predicted molecular weights. To en-
sure correct quantification, cell lysates were subjected to a
second round of immunoprecipitation. There were similar
expression levels for all proteinswhen total radioactivitywas
corrected for thenumberofCys/Met residues contained in
Z a1-antitrypsin (13Met/Cys) and in the intrabodies (all of
them with 9 Met/Cys; Fig. 4B). As a control, we evaluated
the presence of polymers in the cell lysates; no polymers
were detected at the short time of the pulse (lane 1), as
reported previously for polymerogenic mutants of the
neuronal serpin neuroserpin (31). Immunofluorescence
staining revealed a reticular distribution pattern for the
intrabodies that colocalizedwith theER as detectedwith an
anti-KDEL antibody (Fig. 4C). These results demonstrate
that all the intrabodies were efficiently expressed in COS-7
cells at protein levels comparable to a1-antitrypsin and that
they were successfully driven into the ER.

scFv4B12 intrabodies block intracellular
polymerization of Z a1-antitrypsin

We next assessed the ability of the scFv4B12 intrabodies to
prevent the polymerization of Z a1-antitrypsin in our cell
model of disease by performing metabolic labeling of
cells transiently cotransfected with Z a1-antitrypsin and
the intrabodies at a 1:2 molar ratio. The scFv4B12 was
expressed within the ER (scFv4B12KDEL) and along
the secretory pathway (scFv4B12), and we used the
scFv9C5KDEL,whichwas also able tobind toZa1-antitrypsin
but not block polymerization, as a negative control. Cells
were incubated with [35S]-Met/Cys and chased for up to
4 hours (Fig. 5A). Immunoprecipitation of a1-antitrypsin
polymers fromcell lysateswithmAb2C1confirmed that the
scFv4B12KDEL and scFv4B12 intrabodies reduced polymer
formation by up to 60% (Fig. 5A; lanes 12–17 black ar-
rowhead, and Fig. 5B, upper), without any apparent effect
on the translationof totala1-antitrypsin (Fig. 5A, lane1). In
cells transfected with scFv4B12 intrabody, reduced poly-
merization was correlated with secretion levels slightly
higher than thoseobserved in control cells transfectedwith
scFv9C5KDEL (Fig. 5B, lower); in contrast, cells expressing
the scFv4B12KDEL intrabody showed reduced levels of a1-
antitrypsin secretion (Fig. 5A, lanes 7–11, and Fig. 5B,
lower). All intrabody proteins efficiently bound Z a1-
antitrypsin, as indicated by the 32 kDa bands coimmuno-
precipitated from the cell lysates (Fig. 5A, lanes 1–6, white
arrowheads). The scFv4B12 could also be faintly detected
in the cell media (Fig. 5A, lanes 10–11, white arrowhead).
Interestingly, the intrabodies showed capacity to bind both
monomeric (Fig. 5A, lanes 1–6, white arrowheads) and
polymeric (Fig. 5A, lanes 12–17, white arrowheads) Z a1-
antitrypsin. Taken together, these data demonstrate that
expression of the scFv region of the mAb4B12 as an intra-
body, whether or not fused to an ER retention signal, re-
duced the intracellular polymerization of Z a1-antitrypsin
in a cell model of disease.

Next we evaluated the effects of the scFv4B12KDEL and
scFv4B12 intrabodies at longer time points (24 hours) by

steady-state analysis ofCOS-7 cells transiently cotransfected
in the same conditions used above for pulse-chase experi-
ments and introducing an additional GFPKDEL negative
control. When assessed by nondenaturing and SDS-PAGE,
cells expressing either scFv4B12KDEL or scFv4B12 showed a
clear reduction in intracellular polymers (Fig. 5C, upper),
and for scFv4B12KDEL, a faint monomer band could be
seen in the cells lysates (white arrowhead). The scFv
proteins could be visualized using an anti-myc-tag anti-
body (Fig. 5C, myc panel). Quantification by ELISAusing
the mAb2C1 polymer-specific antibody confirmed that,
compared with control cells, both the scFv4B12KDEL and
scFv4B12 intrabodies reduced the levels of intracellular Z
a1-antitrypsin polymers by up to 60% (Fig. 5D, left). At
steady state, the levels of total a1-antitrypsin secreted
into the media were lower when cells expressed intra-
bodies to a1-antitrypsin containing the KDEL sequence
(scFv9C5KDEL and scFv4B12KDEL), whereas secretion
from cells expressing scFv4B12 was significantly higher to
that seen for cells transfected with a nonrelated protein
(GFPKDEL; Fig. 5D, right). These results extend our initial
observation of a small but significant increase in secre-
tion in the presence of the scFv4B12 intrabody after
4hoursbypulse chase, suggesting that changes in secretion
are better evaluated at longer times.

Because the expression of intrabodies with the KDEL
sequence caused their retention within the ER, we as-
sessed whether they could induce ER stress by looking
at protein levels of 2 main ER luminal chaperones:
BiP/GRP78 and GRP94. Our results showed a slight
but not significant increase for both proteins (mainly
for BiP/GRP78) on expression of scFv9C5KDEL and
scFv4B12KDEL (Fig. 5C, GRP94/GRP78 panel, and Fig.
5E). In contrast, cells expressing scFv4B12, which al-
lowed protein trafficking, showed levels of GRP78 and
GRP94 similar to cells expressing the GFPKDEL control.
We also evaluated whether the intrabody-a1-antitrypsin
complex was subjected to degradation by the proteo-
somal or autophagic pathways, but inhibiting these
pathways with specific pharmacologic agents produced
negative results (Fig. 5F). These results demonstrate
that intracellular polymerization of Z a1-antitrypsin is
efficiently prevented by scFv4B12, causing increased
secretion in the absence of marked ER stress or activa-
tion of degradative pathways.

Z a1-antitrypsin retains inhibitory activity in vitro when
bound to the mAb4B12 and after secretion from cells
coexpressing the scFv4B12 intrabody

We next assessed the inhibitory activity of a1-antitrypsin
when bound to mAb4B12. In vitro binding to mAb4B12
increased the stoichiometry of inhibition of Z a1-
antitrypsin forneutrophil elastase from1.760.1 to2.660.2
(Fig. 6A and Table 2). Retention of inhibitory activity by
antibody-bound a1-antitrypsin indicates that the mode of
action of mAb4B12 is not simply steric interference with
the RCL or b-sheet A; partial suppression of inhibitory
activity is suggestive of an effect on the insertion mecha-
nism itself. Ourmetabolic labeling experiments suggested
that a small fraction of the total secreted Z a1-antitrypsin
was in complexwith scFv4B12 (Fig. 5A, lower, lane11).The
activity of this complex was investigated by assessing the
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Figure 5. The scFv4B12 intrabody reduces the polymerization of Z a1-antitrypsin in a cell model of disease. A) COS-7 cells were
cotransfected (Tx) with Z a1-antitrypsin and scFv9C5KDEL, scFv4B12KDEL, or scFv4B12. Twenty-four hours after transfection, cells
were pulse-labeled with [35S]-Met/Cys for 20 minutes and chased for the indicated times. a1-Antitrypsin from cell lysates and
culture media was immunoprecipitated with a polyclonal antibody (total a1-antitrypsin) or mAb2C1 (a1-antitrypsin polymers) by
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2674 Vol. 29 June 2015 ORDÓÑEZ ET AL.The FASEB Journal x www.fasebj.org

Downloaded from www.fasebj.org by (5.69.44.37) on March 03, 2018. The FASEB Journal Vol. 29, No. 6, pp. 2667-2678.

http://www.fasebj.org


formation of an SDS-stable complex with HNE (Fig. 6B).
The results showed that Za1-antitrypsin secreted fromcells
cotransfected with scFv4B12 was able to form an;75 kDa
complex following the addition of 10 ng of HNE, in
agreementwithour in vitroexperiments.Thiswas similar to
Z a1-antitrypsin secreted by cells expressing the control
GFPKDEL and scFv9C5KDEL. These experiments suggest
that the coexpression of the scFv4B12 does not inactivate Z
a1-antitrypsin as a proteinase inhibitor.

Epitope recognized by mAb4B12 is discontinuous and
most likely lies on the helix-rich face of a1-antitrypsin

Todeterminewhether theepitope recognizedby scFv4B12
is unique to the native conformation, a1-antitrypsin in
different conformational states was resolved by non-
denaturing PAGE and detected by immunoblot with
mAb4B12 (Fig. 6C, upper). All conformations,monomeric
and oligomeric, were recognized. However, on separation
by SDS-PAGE, this reactivity was lost (Fig. 6C, lower), in-
dicating that the epitope is discontinuous and therefore
the species recognized in cells by scFv4B12 is not in an
unfolded state. The conservation of the epitope across
multiple conformations of a1-antitrypsin indicates that it
must occur in a structurally invariant region. This obser-
vation was used as the basis of a comparative analysis of
the crystal structures corresponding to the native, RCL
cleaved, and latent forms. An iterative approach was used
in which all possible patches of surface-accessible residues
of 16 Å diameter in one structure were compared with the
equivalent residues in another structure. The combined
result was a surface map indicating the degree to which
these patches were structurally conserved between differ-
ent conformations (Fig. 6D). Consistent with the observa-
tion that binding to mAb4B12 remains compatible with
protease inhibition, the RCL and much of the b-sheet
A-dominated regionflankinghelix F canbe excluded as the
common binding site because of substantial differences
between the structures (coloredblack in Fig. 6D).Thehelix-
rich region spanning helices A, C, G, H, and I, combined
with strands 3Cand4C, form themost extensive surface that
is compatible with interaction with the antibody. Notably,
the mild polymerogenic mutants R39C (I) and E264V (S),
which disrupt stabilizing interactions linking secondary

structural elements, occur within this region (32), in addi-
tion to latch mutations in a1-antitrypsin (33).

DISCUSSION

Conformational diseases are characterized by protein
misfolding and intra- or extracellular accumulation of
pathologicproteinaggregates (34).Mostof thesedisorders
still lack an effective treatment, in part because of the dif-
ficulty of targeting the subcellular compartments in which
mutant proteins accumulate.Antibody-based strategies are
emerging as potent therapies as the small size of scFv
intrabodies facilitates their delivery to subcellular com-
partments,making themsuitable as therapeutic agentsand
tools for the study of conformational disorders (35). In-
deed, a variety of ER-targeted intrabodies, for example,
against the b-amyloid peptide (Alzheimer’s disease) (36)
and to the prion protein (prion disease) (37), have been
shown toprevent protein aggregation by in vitro and in vivo
studies. Although a1-antitrypsin deficiency represents one
of the best models of conformational disease (38), intra-
bodies have not been investigated thus far as a strategy to
alleviateZa1-antitrypsinpolymeroverloadwithin theERof
hepatocytes. The case of a1-antitrypsin deficiency is com-
plicated by the simultaneous need to retain the inhibitory
function of the protein to protect the lungs from excessive
proteolysis. Here we sought to use the exploratory poten-
tial of mAb to identify a binding site that can block the
polymerizationofZa1-antitrypsinwithout loss of inhibitory
activity.

We report the development of the novel mAb4B12 that
was identified by its ability to block heat-induced poly-
merization of Z a1-antitrypsin in vitro. The isolated Fab
domain of this antibody showed similar properties,
whereas anonspecific IgGof the same isotypehadnoeffect
on polymer formation. To our knowledge, this is the first
mAb (whole or Fab region) that robustly inhibits the po-
lymerization of Z a1-antitrypsin. We thus generated 4B12-
based and control intrabodies targeted to the ER by
a C-terminal KDEL sequence. A version of the scFv4B12
intrabodywas alsopreparedwithout theKDELsequence to
allow normal trafficking of a1-antitrypsin and prevent
polymer formation in post-ER compartments, where lower
pH (pH 5.5–4.8 in secretory vesicles) (39) could favor

splitting each sample into 2 equal aliquots. Samples were resolved by 10% (v/v) SDS-PAGE and detected by autoradiography.
Black arrowheads indicate Z a1-antitrypsin (intracellular 52 kDa species and extracellular 55 kDa species) and white arrowheads
indicate scFvs (32 kDa species). B) Quantification graphs from the experiment performed in A (n = 3); *P , 0.05; **P , 0.01,
according to analysis of variance test, followed by Bonferroni’s post hoc test. C) COS-7 cells were cotransfected with Z a1-antitrypsin
and scFv9C5KDEL, scFv4B12KDEL, scFv4B12, or GFPKDEL as indicated. Cell lysates were collected after 24 hours and analyzed either
on 10% (v/v) SDS- or nondenaturing PAGE and immunoblotted for a1-antitrypsin, myc-tag (scFv), KDEL (for detection of both
GRP78 and GRP94 ER chaperones), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). D) Cell lysates from
experiments performed in C were subjected to sandwich ELISA for quantification of intracellular a1-antitrypsin polymers (using
mAb2C1; right), and both cell lysates and culture media were analyzed by sandwich ELISA to quantify the percentage of secreted
total a1-antitrypsin (using mAb3C11, which recognizes all conformers of a1-antitrypsin and does not compete with mAb9C5; left).
Histograms represent the means 6 SEM of 5 independent experiments. **P , 0.01; Mann-Whitney test. E) Histogram of 3
independent experiments as in C showing fold increase of GRP78 and GRP94 normalized to loading control and then to
GFPKDEL (means 6 SEM). Mann-Whitney test (n = 3) showed nonsignificant differences. F) COS-7 cells cotransfected as in C were
treated either with 5 mM lactacystin (left) or 200 nM bafilomycin (right) for 16 hours. a1-Antitrypsin:intrabody complex was
quantified by sandwich ELISA using a polyclonal anti-a1-antitrypsin antibody for capture and an anti-myc antibody for detection.
Graphs represent the means6 SD of 2 or 3 independent experiments. G) Cell lysates from F (left) were immunoblotted for cyclin
B1, a rapidly degraded proteasomal substrate, as a positive control for blocking of proteasomal activity with lactacystin.
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polymer formation as described in vitro at low pH (pH 5.5)
(40). Our data show that the scFv4B12KDEL and scFv4B12
intrabodies can inhibit the intracellular polymerization of
Z a1-antitrypsin by up to 60%, suggesting that most of the
polymerization occurs within the ER. Parallel experiments
with a control intrabody (scFv9C5KDEL) that recognizes all

conformers of a1-antitrypsin confirmed that the polymer-
ization blocking effect was specific to the 4B12-based
intrabodies. It is notable that an antibody identified by its
ability to block heat-induced polymerization of native Za1-
antitrypsin in vitro also blocked polymer formation in a cell
model of disease. This is in keeping with the data from
the antipolymer mAb2C1, showing that heating Z a1-
antitrypsin gives rise to an epitope on a1-antitrypsin poly-
mers that is also formed in vivo (20). It also suggests that the
majority of intracellular polymers form from “near-native”
folded a1-antitrypsin. The failure to completely abolish
intracellular polymerization may result from insufficient
intrabody accessing the ER, the shielding of the blocking
epitope in the crowded environment of the ER, or alter-
native polymers forming by pathways that are not blocked
by binding to the scFv4B12 epitope.

To date, most studies that have attempted to block the
polymerization of Z a1-antitrypsin have used chemical

TABLE 2. The stoichiometry of inhibition of the interaction between
a1-antitrypsin and HNE in the presence of mAb4B12

Sample Stoichiometry of inhibition

Mm 1
Mm+mAB4B12 1.3 6 0.1
Zm 1.7 6 0.1
Zm+mAb4B12 2.6 6 0.2
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patches 16 Å in diameter (approximately the size of an antibody-antigen interface) were identified and classified, and their
central residue was colored according to whether they were most (blue) or least (red) structurally conserved between structures
of the native, cleaved, and latent conformations. For patches in which more than half of the constituent residues have been
displaced by .4.8Å or for those that overlap a glycosylation-compatible asparagine residue, the central position has been colored
black. Image prepared using Pymol (Schrödinger, Camberley, United Kingdom).
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chaperones, synthetic peptides, and small compounds
(8–14), some of themwith promising results in vitro. Sugar
and alcohol molecules can reduce the rate of in vitro po-
lymerization by 2.9- to 7.7-fold (10), but the few studies that
have evaluated the effect of chemical chaperones or small
molecules in cell systems or in vivo have focused on Z a1-
antitrypsin secretion, with no direct evidence of polymer
reduction (8, 14). Here we show that the 4B12-based
intrabodies were able to prevent polymer formation in vitro
and to reduce it by up to 2.5-fold in a cell model of disease
and that the trafficking-competent scFv4B12 intrabody
leads to a significant improvement of Z a1-antitrypsin se-
cretion. Furthermore, the scFv4B12 intrabodydidnot elicit
ER stress, suggesting that this protein had no major sec-
ondary effects in the ER. Previous evidence has shown that
scFv expressed in the secretory compartment can be sub-
jected to proteasome degradation (41); however, in our
hands the Z a1-antitrypsin-intrabody complex was not de-
graded by the proteasome or by autophagy, in agreement
with the absence of marked ER stress. Future studies will
assess the effects of the 4B12 intrabody in an in vivomodel
of Z a1-antitrypsin polymer formation.

Preventing Z a1-antitrypsin polymerization is an impor-
tant therapeutic goal, given the link between polymer de-
position and liver disease (42). However, strategies that
achieve this by filling the “gap” between strands 3 and 5 of
b-sheet A would compromise the inhibitory activity of a1-
antitrypsin, which requires internalization of the cleaved
RCL in the core of this b-sheet. This is an important issue,
in particular with reactive loop peptidomimetics and the
first generationof smallmoleculepolymerblockers (1, 14).
In contrast, Z a1-antitrypsin bound to mAb4B12 retained
almost two thirds of its inhibitory activity against neutrophil
elastase in vitro, supporting the use of mAb4B12 (as whole
antibody or intrabody) as a research tool in a1-antitrypsin
deficiency. This suggests a mechanism of action whereby
mAb4B12 increases resistance of the variant to opening of
its central b-sheet. However, it does not achieve this by
simply preferentially stabilizing the 5-stranded native state,
as the epitope is present across the conformational reper-
toire, including the 6-stranded form, of the protein. In-
stead, the antibody appears to act by reducing the structural
dynamics of the antigen in a conformation-neutral fashion.
It is therefore remarkable that this antibody prevents poly-
merization in the cellular context at all; this is highly sug-
gestive of a mechanism whereby the antibody exploits
a folding/polymerization pathway in which polymerization
ensues from a substantially folded, native-like form.

Our results openup the use of intrabodies in thefield of
serpinopathies, with unique advantages over existing gene-
targeted techniques such as silencing/interfering RNA or
RNA aptamers (called “intramers” when intracellularly
expressed) (43, 44). Particularly, intrabodies can target
proteins in different cellular compartments; present very
stable expression inmammalian cells comparedwith small
siRNAs (45) or intramers (46); are highly specificity to the
target; and can reroute themisfolding-prone protein from
the accumulation site (36). However, as for other gene
therapy strategies, the in vivo delivery of intrabodies is
challenging. Delivery using adeno-associated virus is cur-
rently preferred for gene therapy, as a nonintegrative
vector that can highly infect dividing cells and has re-
cently shown promising results in vivo (47). Targeting Z

a1-antitrypsin would also require a hepatotropic delivery
system to ensure sufficient amountsof intrabody expressed
in hepatocytes. Recent reports using vectors driven by
humanized hepatocyte-specific promoters (such as the
apolipoprotein locus control region and the human a1-
antitrypsin promoter—encoding the apolipoprotein locus
control region and the human a1-antitrypsin—or the al-
bumin promoter) have successfully achieved sustained
transgene expression in the liver in vivo (48), opening the
way to gene therapy applications for liver disease.

This study provides thefirst step in theuse of intrabodies
or other molecules designed to mimic their binding
properties as an approach to prevent the polymerizationof
Z a1-antitrypsin while preserving its inhibitory activity and
encourages future research in their therapeutic applica-
tion. In addition, further studies performed in more
physiologic systems and evaluating the structural basis of
the blocking properties of mAb4B12 may provide insights
into the stability of a1-antitrypsin and the polymerization
mechanism that underlies the ensuing conformational
disease.
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30. Böldicke, T. (2007) Blocking translocation of cell surface
molecules from the ER to the cell surface by intracellular
antibodies targeted to the ER. J. Cell. Mol. Med. 11, 54–70

31. Kroeger, H., Miranda, E., MacLeod, I., Pérez, J., Crowther, D. C.,
Marciniak, S. J., and Lomas, D. A. (2009) Endoplasmic reticulum-
associated degradation (ERAD) and autophagy cooperate to
degrade polymerogenic mutant serpins. J. Biol. Chem. 284,
22793–22802

32. Lomas, D. A., and Carrell, R. W. (2002) Serpinopathies and the
conformational dementias. Nat. Rev. Genet. 3, 759–768

33. Fra, A. M., Gooptu, B., Ferrarotti, I., Miranda, E., Scabini, R.,
Ronzoni, R., Benini, F., Corda, L., Medicina, D., Luisetti, M., and
Schiaffonati, L. (2012) Three new alpha1-antitrypsin deficiency
variants help to define a C-terminal region regulating confor-
mational change and polymerization. PLoS ONE 7, e38405

34. Kopito, R. R., and Ron, D. (2000) Conformational disease. Nat.
Cell Biol. 2, E207–E209

35. Cardinale, A., and Biocca, S. (2008) Combating protein misfolding
and aggregation by intracellular antibodies. Curr. Mol. Med.
8, 2–11

36. Paganetti, P., Calanca, V., Galli, C., Stefani, M., and Molinari, M.
(2005) beta-site specific intrabodies to decrease and prevent
generation of Alzheimer’s Abeta peptide. J. Cell Biol. 168,
863–868

37. Cardinale, A., Filesi, I., Vetrugno, V., Pocchiari, M., Sy, M. S., and
Biocca, S. (2005) Trapping prion protein in the endoplasmic
reticulum impairs PrPC maturation and prevents PrPSc
accumulation. J. Biol. Chem. 280, 685–694

38. Carrell, R. W., and Lomas, D. A. (2002) Alpha1-antitrypsin
deficiency—a model for conformational diseases. N. Engl. J. Med.
346, 45–53

39. Wu, M. M., Grabe, M., Adams, S., Tsien, R. Y., Moore, H. P., and
Machen, T. E. (2001) Mechanisms of pH regulation in the
regulated secretory pathway. J. Biol. Chem. 276, 33027–33035

40. Devlin, G. L., Chow, M. K., Howlett, G. J., and Bottomley, S. P.
(2002) Acid Denaturation of alpha1-antitrypsin: characterization
of a novel mechanism of serpin polymerization. J. Mol. Biol. 324,
859–870

41. Filesi, I., Cardinale, A., Mattei, S., and Biocca, S. (2007) Selective
re-routing of prion protein to proteasomes and alteration of its
vesicular secretion prevent PrP(Sc) formation. J. Neurochem. 101,
1516–1526

42. Eriksson, S., Carlson, J., and Velez, R. (1986) Risk of cirrhosis and
primary liver cancer in alpha 1-antitrypsin deficiency. N. Engl. J.
Med. 314, 736–739

43. Brantl, S. (2002) Antisense-RNA regulation and RNA interference.
Biochim. Biophys. Acta 1575, 15–25

44. Ulrich, H. (2005) DNA and RNA aptamers as modulators of
protein function. Med. Chem. 1, 199–208

45. Fish, R. J., and Kruithof, E. K. (2004) Short-term cytotoxic effects
and long-term instability of RNAi delivered using lentiviral vec-
tors. BMC Mol. Biol. 5, 9

46. Famulok, M., Blind, M., and Mayer, G. (2001) Intramers as
promising new tools in functional proteomics. Chem. Biol. 8,
931–939

47. Southwell, A. L., Ko, J., and Patterson, P. H. (2009) Intrabody gene
therapy ameliorates motor, cognitive, and neuropathological
symptoms in multiple mouse models of Huntington’s disease.
The Journal of neuroscience: the official journal of the Society for
Neuroscience 29, 13589-13602

48. Wooddell, C. I., Reppen, T., Wolff, J. A., and Herweijer, H.
(2008) Sustained liver-specific transgene expression from the
albumin promoter in mice following hydrodynamic plasmid
DNA delivery. J. Gene Med. 10, 551–563

Received for publication November 20, 2014.
Accepted for publication February 19, 2015.
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