17,056 research outputs found

    Integral-field studies of the high-redshift Universe

    Full text link
    We present results from a new method of exploring the distant Universe. We use 3-D spectroscopy to sample a large cosmological volume at a time when the Universe was less than 3 billion years old to investigate the evolution of star-formation activity. Within this study we also discovered a high redshift type-II quasar which would not have been identified with imaging studies alone. This highlights the crucial role that integral-field spectroscopy may play in surveying the distant Universe in the future.Comment: From proceedings of Euro3D Spectroscopy annual RTN network meeting (ed. J. Walsh). 5 pages, accepted for publication in Astron. Nach

    Analysing BitTorrent's seeding strategies

    Get PDF
    BitTorrent is a typical peer-to-peer (P2P) file distribution application that has gained tremendous popularity in recent years. A considerable amount of research exists regarding BitTorrent’s choking algorithm, which has proved to be effective in preventing freeriders. However, the effect of the seeding strategy on the resistance to freeriders in BitTorrent has been largely overlooked. In addition to this, a category of selfish leechers (termed exploiters), who leave the overlay immediately after completion, has never been taken into account in the previous research. In this paper two popular seeding strategies, the Original Seeding Strategy (OSS) and the Time- based Seeding Strategy (TSS), are chosen and we study via mathematical models and simulation their effects on freeriders and exploiters in BitTorrent networks. The mathematical model is verified and we discover that both freeriders and exploiters impact on system performance, despite the seeding strategy that is employed. However, a selfish-leechers threshold is identified; once the threshold is exceeded, we find that TSS outperforms OSS – that is, TSS reduces the negative impact of selfish lechers more effectively than OSS. Based on these results we discuss the choice of seeding strategy and speculate as to how more effective BitTorrent-based file distribu- tion applications can be built

    Developing performance-portable molecular dynamics kernels in Open CL

    Get PDF
    This paper investigates the development of a molecular dynamics code that is highly portable between architectures. Using OpenCL, we develop an implementation of Sandia’s miniMD benchmark that achieves good levels of performance across a wide range of hardware: CPUs, discrete GPUs and integrated GPUs. We demonstrate that the performance bottlenecks of miniMD’s short-range force calculation kernel are the same across these architectures, and detail a number of platform- agnostic optimisations that improve its performance by at least 2x on all hardware considered. Our complete code is shown to be 1.7x faster than the original miniMD, and at most 2x slower than implementations individually hand-tuned for a specific architecture

    Mine water outbreak and stability risks : examples and challenges from England and Wales

    Get PDF
    Abstract Although their frequency of occurrence is rare, the sudden outbreak of mine water from abandoned mines, or collapse of waste rock stores can be environmentally significant and represent significant postclosure legacies. This paper reports on a national survey of abandoned non-coal mine sites where concerns over mine water outbreak or stability are apparent across England and Wales. A range of respondents across environmental regulators and local authorities were consulted to populate a geodatabase. Outbreak risk was highlighted as a documented or suspected concern at 19 mine sites. Typical issues were related to adit blockages and associated perched mine water alongside issues of sudden ingress of surface waters into mines under high flow conditions. The majority of the responses concerning stability issues (72 sites in total) were related to fluvial erosion of riparian waste rock heaps. While successful management of such issues is highlighted in some cases, these are generally isolated examples. In both cases, the fact that stability or outbreak issues are often caused or exacerbated by extreme rainfall events highlights a potential future management issue with the predicted effects of climate change in north west Europe

    Connectivity-guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks

    Get PDF
    Mobile sensors can relocate and self-deploy into a network. While focusing on the problems of coverage, existing deployment schemes largely over-simplify the conditions for network connectivity: they either assume that the communication range is large enough for sensors in geometric neighborhoods to obtain location information through local communication, or they assume a dense network that remains connected. In addition, an obstacle-free field or full knowledge of the field layout is often assumed. We present new schemes that are not governed by these assumptions, and thus adapt to a wider range of application scenarios. The schemes are designed to maximize sensing coverage and also guarantee connectivity for a network with arbitrary sensor communication/sensing ranges or node densities, at the cost of a small moving distance. The schemes do not need any knowledge of the field layout, which can be irregular and have obstacles/holes of arbitrary shape. Our first scheme is an enhanced form of the traditional virtual-force-based method, which we term the Connectivity-Preserved Virtual Force (CPVF) scheme. We show that the localized communication, which is the very reason for its simplicity, results in poor coverage in certain cases. We then describe a Floor-based scheme which overcomes the difficulties of CPVF and, as a result, significantly outperforms it and other state-of-the-art approaches. Throughout the paper our conclusions are corroborated by the results from extensive simulations

    An Investigation of the Phenomenon of Separation in the Air Flow Around Simple Quadric Cylinders

    Get PDF
    The tests, conducted at the Guggenheim Aeronautical Laboratory of Stanford University, to investigate the phenomenon of separation in the air flow past geometric shapes are described in this report

    Covariant spinor representation of iosp(d,2/2)iosp(d,2/2) and quantization of the spinning relativistic particle

    Get PDF
    A covariant spinor representation of iosp(d,2/2)iosp(d,2/2) is constructed for the quantization of the spinning relativistic particle. It is found that, with appropriately defined wavefunctions, this representation can be identified with the state space arising from the canonical extended BFV-BRST quantization of the spinning particle with admissible gauge fixing conditions after a contraction procedure. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2)iosp(d,2/2) algebra.Comment: Updated version with references included and covariant form of equation 1. 23 pages, no figure
    • 

    corecore