
http://wrap.warwick.ac.uk

Original citation:
Pennycook, S. J. and Jarvis, S. A. (2012) Developing performance-portable molecular
dynamics kernels in Open CL. In: 3rd International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computing Systems, International
Conference for High Performance Computing, Networking, Storage and Analysis, Salt
Lake City, UT, 10-16 Nov 2012. Published in: 2012 SC Companion : High Performance
Computing, Networking, Storage and Analysis (SCC) pp. 386-395.

Permanent WRAP url:
http://wrap.warwick.ac.uk/56685

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Copyright statement:
“© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.
For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/16665144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/56685
mailto:publications@warwick.ac.uk

Developing Performance-Portable Molecular Dynamics Kernels in OpenCL

S. J. Pennycook, S. A. Jarvis
Department of Computer Science,

University of Warwick,
Coventry, UK

e-mail: sjp@dcs.warwick.ac.uk

Abstract—This paper investigates the development of a
molecular dynamics code that is highly portable between
architectures. Using OpenCL, we develop an implementation
of Sandia’s miniMD benchmark that achieves good levels of
performance across a wide range of hardware: CPUs, discrete
GPUs and integrated GPUs.

We demonstrate that the performance bottlenecks of
miniMD’s short-range force calculation kernel are the same
across these architectures, and detail a number of platform-
agnostic optimisations that improve its performance by at least
2x on all hardware considered. Our complete code is shown to
be 1.7x faster than the original miniMD, and at most 2x slower
than implementations individually hand-tuned for a specific
architecture.

Keywords-scientific computing; accelerator architectures;
parallel programming; performance analysis; high perfor-
mance computing

I. INTRODUCTION
In recent years, CPU alternatives have gained significant
traction within the high-performance computing (HPC) in-
dustry, and many of the world’s fastest supercomputers [1]
currently employ hybrid system designs that pair traditional
CPUs with discrete co-processors (e.g. Cell, FPGAs, GPUs,
Intel Xeon Phi). Some vendors are already placing CPU
and GPU cores on the same chip (AMD Fusion, Intel HD
Graphics), while others are exploring this option (Nvidia
Project Denver).

Optimising codes for each new hardware offering
is clearly desirable, ensuring fair comparisons between
them [2]–[5], and enabling HPC sites to switch between ven-
dors. However, creating and maintaining highly optimised
implementations for each platform is often not feasible –
legacy production codes are too large to re-write using
multiple programming languages/toolkits, and maximising
performance on a new platform requires significant program-
mer effort and expertise.

The Open Computing Language (OpenCL [6]) is a cross-
vendor standard which ensures the functional portability of
codes across hardware, thereby eliminating the need for
applications to be re-coded on a per-device basis. However,
it makes no guarantees of performance portability – an
OpenCL application may be highly tuned for a particular
architecture, but exhibit very different performance on oth-
ers.

This paper investigates the development of a
“performance-portable” OpenCL implementation of
Sandia’s miniMD benchmark [7], [8], which seeks to
exhibit good levels of performance across multiple
architectures. miniMD is a simplified version of the
popular LAMMPS package [9], [10], intended for use in
optimisation studies such as this one; due to its simplicity,
potential optimisations can be explored much more rapidly
than in the context of a production application.

Although this is not the first paper to address the issue
of performance portability for OpenCL codes [11]–[15],
it is the first (to our knowledge) to do so for molecular
dynamics (MD). The use of co-processors in this domain has
been shown in previous research to deliver significant speed-
ups [16]–[22]. However, it remains to be seen if a single set
of optimisations allows for efficient execution across CPUs,
discrete GPUs, and integrated GPUs.
The contributions of this paper are as follows:

• We detail the development of a performance-portable
kernel for short-range force calculation, highlighting
a number of important design decisions: the storage
format of the neighbour list, the use of Newton’s third
law (N3), and using vector types to improve both
gather/scatter performance and SIMD efficiency.

• We report the performance of our kernel executing on a
wide range of hardware from multiple vendors, includ-
ing: CPUs (Intel E3-1240; AMD A8-3850), discrete
GPUs (Nvidia C1060, C2050, GTX 680; AMD FirePro
V7800) and integrated GPUs (Intel HD4000; AMD
HD6550D). Our optimisations improve performance by
at least 2x across all architectures considered.

• We compare the performance of kernels auto-vectorised
by the Intel OpenCL compiler to hand-vectorised ker-
nels, and identify issues in the compilers from both
AMD and Intel that result in the generation of ineffi-
cient assembly code for gather/scatter operations.

• Finally, we compare the performance of our complete
application to the original miniMD, a hand-vectorised
implementation using AVX instructions, and the CUDA
kernel found within LAMMPS. Our OpenCL imple-
mentation is 1.7x faster than the original, and at most 2x
slower than highly-optimised “native” implementations.

The remainder of this paper is structured as follows: Sec-

c© 2012 IEEE

tion II presents a survey of related work; Section III in-
troduces the OpenCL programming model; Section IV de-
tails the development and optimisation of our performance-
portable MD code; Section V compares the performance
of our code with implementations highly optimised for a
specific platform; Section VI discusses the implications of
our results; and Section VII concludes the work.

II. RELATED WORK

A. Performance Portability

In previous work [15], we investigated the performance
portability of OpenCL kernels in the context of wavefront
applications, demonstrating that the performance of OpenCL
on CPUs can match that of a scalar, MPI-based imple-
mentation. This work extends our approach to a new class
of application (molecular dynamics), with a significantly
different memory access pattern (gather-scatter), and focuses
on the efficient utilisation of modern single-instruction-
multiple-data (SIMD) hardware.

Others have examined the performance portability of
OpenCL kernels from different domains [11]–[14]. In all
cases, the authors conclude that “auto-tuning” (i.e. writing
kernels in a parametrised fashion and determining optimal
parameter values at runtime) is an appropriate method of
achieving portability across hardware. This methodology
is well-suited to OpenCL; library calls are provided for
obtaining detailed hardware information, and kernels can be
compiled with different parameter values at run time.

B. OpenCL and Molecular Dynamics

The most similar MD codes to the implementation presented
here are the LAMMPSGPU package [18] and the MD bench-
mark from the Scalable HeterOgeneous Computing (SHOC)
suite, both of which can be compiled to use OpenCL. They
also both carry out a simple Lennard-Jones (LJ) simulation,
although with different parameters and initial conditions.

SHOC is intended to be run across multiple architec-
tures, but its input is sufficiently different from the default
LAMMPS and miniMD simulations that its performance is
not necessarily representative. Our OpenCL implementation
does not build on either of these existing implementations
– a serial, scalar baseline is more representative of a legacy
application and will better enable us to identify the perfor-
mance benefits of each individual optimisation.

III. OPENCL

The OpenCL standard [6] is maintained by the Khronos
Group, but is contributed to by many vendors and institu-
tions. At the time of writing, the language is supported on
the majority of HPC hardware, although compilers are at dif-
ferent stages of maturity. Owing to its similarity to Nvidia’s
proprietary CUDA programming model, the mapping be-
tween OpenCL and GPU hardware is quite straightforward;
the best way to map OpenCL to CPU hardware is less clear.

OpenCL Device OpenCL Device

CPU GPU

Compute Unit/Processing Element
Compute Unit
Processing Element

Figure 1. Mapping between CPU/GPU hardware and OpenCL.

A. Programming Model
In OpenCL, a host CPU running C/C++ code uses library
calls to communicate with and control one or more devices.
Each device is made up of a number of compute units, which
can be further sub-divided into processing elements.

Device functions are known as kernels and can be com-
piled just-in-time (JIT) from source, or loaded from a
cached binary if one exists for the current target platform.
These kernels are executed in a single-program-multiple-data
(SPMD) fashion by a one-, two- or three-dimensional set of
work-items, which are grouped together into work-groups.

Work-groups can be scheduled for execution on any avail-
able compute unit and in any order, thus permitting OpenCL
applications to scale to fit different hardware configurations.
There is no method of global synchronisation during a
kernel, but local synchronisation is possible between all
work-items in a given work-group.

B. Hardware Mapping
How the concepts of devices, compute units, processing
elements, work-groups and work-items map to different
architectures is decided by the OpenCL runtime, a library
that is often provided by the hardware vendor (but can also
be supplied by others [23], [24]). A typical mapping between
CPU/GPU hardware and OpenCL is shown in Fig. 1.

All of the CPU cores in a node are grouped into a
single device. For CPUs with hyperthreading support, each
hyperthread appears as a compute unit (e.g. the E3-1240
used in this work has 4 cores, but 2-way hyperthreading,
and thus 8 compute units). The AMD and Intel runtimes
expose the SIMD architectures of modern CPUs differently;
the AMD SDK generates SSE/AVX code only if OpenCL’s
vector types (e.g. float4, float8) are used explicitly,
whereas the Intel SDK attempts to auto-vectorise kernels by
packing contiguous work-items into SIMD execution units.

GPUs from different vendors are divided into compute
units and processing elements in different ways: on Intel
GPUs, each execution unit is a compute unit of 8 processing
elements; on Nvidia GPUs, each stream multiprocessor
(compute unit) consists of 8, 32 or 192 “CUDA cores”
(processing elements) on the Tesla, Fermi and Kepler archi-
tectures respectively; and on AMD GPUs, a compute unit

Table I
HARDWARE AND SOFTWARE CONFIGURATION.

CPUs Integrated GPUs Discrete GPUs
E3-1240 A8-3850 HD4000 HD6550D C1060 C2050 GTX680 V7800

Manufacturer Intel AMD Intel AMD Nvidia Nvidia Nvidia AMD
Compute Units 8 4 16 5 30 14 8 18
Proc. Elements 8 4 128 400 240 448 1536 1440

Peaka GFLOP/s 211 93 147 480 933 1288 3090 2016
Bandwidth (GB/s) 21 30 26 30 102 144 192 128

Powerb (Watts) 80 100 77 100 189 238 195 150
Host Compiler Intel 11.1.072

Host Flags -O3 -xHost -restrict -fno-alias -ipo
MPI Library OpenMPI 1.4.3

Intel SDK Intel OpenCL 2012
AMD SDK AMD APP 2.7

NVIDIA SDK CUDA Toolkit 5.0
OpenCL Flags -cl-single-precision-constant -cl-mad-enable

-cl-fast-relaxed-math

aPeak performance for single precision.
bTDP for “fused” architectures includes CPU and GPU power.

contains 16 stream cores of 5 simple processing elements
each. Work-groups are scheduled to compute units, and
processing elements execute work-items in 8-, 32- and 64-
wide SIMD on Intel, Nvidia and AMD GPUs respectively.

Since GPUs rely on a CPU host, communication with the
host can impact application performance. Integrated GPUs
can communicate with the host through shared memory, but
all data to be used by discrete GPUs must be transferred
explicitly to the device via PCI-Express (PCIe).

C. Experimental Setup

A detailed description of the hardware and software setup
used in this paper is given in Table I. The only exceptions
to this setup are: the HD4000, which can only be used as an
OpenCL device under Windows; and the A8-3850 CPU (plus
its integrated HD6550D GPU), which is hosted elsewhere.
On these two systems, we use the Visual Studio 2010 C++
compiler and GCC respectively.

Although the Intel i7-3770 (Ivy Bridge) CPU attached to
the HD4000 can also be used as an OpenCL device, we do
not report on its performance. We instead report performance
on an Intel Xeon E3-1240, a server part built on a closely
related microarchitecture (Sandy Bridge).

In all experiments, we round the number of work-items up
to a multiple of the hardware’s “preferred work-group size
multiple”, as reported by the device, and allow the OpenCL
runtime to choose the number of work-groups.

All performance figures are given as execution times
in seconds, and all implementations make use of single
precision floating-point arithmetic. We configure miniMD to
simulate 256,000 atoms with a uniform density of 0.8442,
using the default cut-off distance of 2.5, for 100 timesteps.
Except where noted, all experiments pair hardware with the
OpenCL SDK provided by the vendor.

IV. DEVELOPING PERFORMANCE-PORTABLE KERNELS

The LJ simulation performed by miniMD can be broken
down into four components. The calculation of short-range

1: for all atoms i do
2: for all neighbours k do
3: j = neighbour list for atom i[k]
4: delx = xi - pos[j+0]
5: dely = yi - pos[j+1]
6: delz = zi - pos[j+2]
7: rsq = (delx × delx) + (dely × dely) + (delz × delz)
8: if (rsq < Rc) then
9: sr2 = 1.0 / rsq

10: sr6 = sr2 × sr2 × sr2
11: f = sr6 × (sr6 - 0.5) × sr2
12: fxi += f × delx
13: fyi += f × dely
14: fzi += f × delz
15: force[j+0] -= f × delx
16: force[j+1] -= f × dely
17: force[j+2] -= f × delz
18: end if
19: end for
20: end for

Figure 2. Scalar short-range force calculation.

forces is responsible for more than 80% of its runtime,
and evaluates the force between all atoms separated by less
than some “cut-off” distance (Rc). To avoid evaluating the
distance between all pairs of atoms at each time step, the
force compute makes use of a pre-computed “neighbour
list” [25] for each atom. Building this list is the second-
most expensive step, accounting for approximately 10% of
execution time. The remaining time is split between: inter-
node communication, which sees nodes exchange position
and force information for atoms near the boundary of their
sub-volume; and the update of atom velocities and positions.

In this section, we discuss the challenges of achieving
high performance portability for all four components of the
simulation. However, our optimisation efforts focus exclu-
sively on short-range force calculation, since it accounts for
such a high fraction of execution time. As we demonstrate
in Section V, the other components of the simulation may
become a significant bottleneck on some hardware; there is a
clear need to investigate these issues further in future work.

A. Short-Range Force Calculation

Fig. 2 shows pseudo-code for the scalar short-range force
calculation loop in miniMD. Most of the work in this loop
could potentially be executed in parallel; the positions of
atoms are fixed during this operation, and thus the inter-
atomic distance (and force) between all pairs of atoms in
the system can be computed concurrently. A natural way
to map this work to the OpenCL programming model is to
assign one work-item to each atom.

This loop makes use of N3 – the force i exerts on j has the
same magnitude as the force j exerts on i, but in the opposite
direction. A given atom-pair (i, j) appears in the neighbour
list for either i or j, and the force between them is calculated
only once. This avoids redundant computation of forces, but
introduces a potential for update conflicts (Lines 15–17),
since several atoms may share a neighbour – if we attempt
to update the same neighbour multiple times simultaneously,
only one update will take effect.

j0 ... j1 ... j2 ... j3 ...

j0 j1 j2 j3

Gather from Original Neighbour List

j0 j1 j2 j3 ...

j0 j1 j2 j3

Contiguous Load from Transposed Neighbour List

Figure 3. Effect of neighbour list transposition on memory access pattern.
Each arrow represents a single load instruction.

Since OpenCL does not support global synchronisation
between work-items, it is difficult to prevent such conflicts.
Although many devices support atomic memory operations,
on current-generation hardware they are too expensive to be
used in an inner-loop such as this one [18]. We instead opt
to not use N3, modifying the neighbour list build to store
(i, j) in the lists of both i and j, and removing Lines 15–17
from the kernel. This removes the potential for conflicts, at
the expense of twice as much computation.

1) Performance Bottlenecks: If contiguous work-items
are mapped to SIMD execution units (as is the case on
GPUs, and for auto-vectorised code on CPUs), then Lines 3–
6 have the biggest performance impact. Each of the memory
accesses on these lines requires a gather operation (i.e. they
are “uncoalesced memory accesses”, in CUDA parlance).
If work-items instead/also expose parallelism through the
explicit use of vector types (as is the case on AMD GPUs
and for non-vectorised code on CPUs), then the use of only
scalar types results in significant SIMD inefficiency.

Improving the performance of this kernel on all of the
architectures considered in this study thus depends upon
achieving better utilisation of SIMD hardware. As we
demonstrate in the remainder of this section, all hardware
therefore benefits from the same set of optimisations.

2) Neighbour List Gather: If the neighbour list of each
atom is stored in contiguous memory, any access to this list
from work-items operating in SIMD requires a gather; with
n neighbours per atom, W contiguous work-items read from
memory with a stride of n.

A much more efficient way to store the neighbour list
is in transposed form (i.e. the 0th neighbour of W atoms,
followed by the 1st neighbour, and so on). Where these
W atoms have a different number of neighbours, we insert
“dummy” neighbours, which are located at infinity and
always fail the cut-off check. This is likely to give better
performance than a completely transposed neighbour list
(i.e. the 0th neighbour of all atoms, followed by the 1st
neighbour, and so on) on architectures with caches.

Table II
PERFORMANCE IMPACT OF NEIGHBOUR LIST TRANSPOSITION.

Device No Transpose Transpose Speed-up(Seconds) (Seconds)
Intel Xeon E3-1240 3.34 2.67 1.25x
AMD A8-3850 7.13 7.13 1.00x
Intel HD4000 5.58 2.76 2.02x
AMD HD6550D 9.33 1.89 4.95x
Nvidia Tesla C1060 3.68 2.91 1.26x
Nvidia Tesla C2050 2.52 0.86 2.92x
Nvidia GTX 680 2.49 1.04 2.40x
AMD FirePro V7800 1.95 0.35 5.63x

__kernel force_compute(float4* pos, float4* force...) {
int i = get_global_id(0);
float4 posi = pos[i];
float4 fi = (float4) (0.0, 0.0, 0.0, 0.0);
for (k = 0; k < number_of_neighbours[i]; k++) {

int j = neighbour_list_for_atom_i[k];
float delx = posi.x - pos[j].x;
float dely = posi.y - pos[j].y;
float delz = posi.z - pos[j].z;
...

}
force[i] = fi;

}

Figure 4. OpenCL code-snippet for a kernel storing atom data in float4s.

When W is set to the hardware’s SIMD width, all neigh-
bour list accesses become a single load from contiguous
memory locations (Fig. 3). We therefore set W to 1 for the
AMD CPU; 8 for the Intel CPU and GPU; 32 for Nvidia
GPUs; and 64 for AMD GPUs.

This transposition also enables the Intel SDK to auto-
vectorise our kernel, which is only attempted when the
compiler expects it to improve performance (based on some
heuristic). We believe that the presence of a large number
of gather operations caused the original kernel to fail this
check, thus preventing auto-vectorisation.

Table II gives the execution times for the kernel with
and without a transposed neighbour list. The A8-3850 is
the only architecture not to see a speed-up, and this is due
to it executing work-items in scalar; when W is set to 1, the
neighbour list layout is not changed. The cost of a gather
operation increases with SIMD width, and we therefore see
higher speed-ups on architectures with wider SIMD.

3) Position Gather: The loads on Lines 4–6 become
three gather operations; one for each of x, y and z. For
W contiguous work-items, this equates to 3W scalar loads,
from up to W cache lines. Defining the position and force
arrays using vector types (Fig. 4) serves as a hint to the
compiler that x, y and z are stored contiguously; for all of
the hardware we consider, the full position of an atom can
be loaded in a single memory access, and this hint permits
the compiler to employ a more efficient gather (Fig. 5).

On Nvidia GPUs, the accesses to x, y and z become
coalesced and the Intel compiler is able to emit a more
efficient sequence of instructions – an array-of-structs (AoS)
to struct-of-arrays (SoA) transpose, in place of a series of
scalar loads – on both CPU and integrated GPU hardware.

x0 ... x1 ... x2 ... x3 ...

x0 x1 x2 x3

Scalar Gather of Positions

x0 y0 z0

x0 x1 x2 x3

Vector Gather of Positions

... x1 y1 z1 ... x2 y2 z2 ... x3 y3 z3 ...

y0 y1 y2 x3 z0 z1 z2 z3

Figure 5. Effect of using vector types on memory access pattern.

Table III
PERFORMANCE IMPACT OF USING VECTOR TYPES.

Device Scalar Gather Vector Gather Speed-up(Seconds) (Seconds)
Intel Xeon E3-1240 2.67 2.00 1.33x
AMD A8-3850 7.13 8.62 0.83x
Intel HD4000 2.76 1.59 1.74x
AMD HD6550D 1.89 1.88 1.00x
Nvidia Tesla C1060 2.91 1.54 1.89x
Nvidia Tesla C2050 0.86 0.67 1.29x
Nvidia GTX 680 1.04 0.45 2.29x
AMD FirePro V7800 0.35 0.34 1.02x

As shown in Table III, most architectures benefit from
this change, with only AMD hardware seeing little (or no)
improvement. Performance is not significantly impacted on
the HD6550D or V7800, suggesting that they are already
able to hide the latency of these memory accesses. The A8-
3850 experiences a slow-down of 1.2x, again because it does
not execute work-items in SIMD. Although the SDK uses a
vector load to gather x, y and z as expected, the remainder
of the kernel continues to use scalar arithmetic; therefore,
each component of the loaded vector must be extracted into
a scalar register, resulting in worse performance.

4) Explicit Vectorisation: After converting the position
array to an array of float4 vectors, our next step is to
convert the arithmetic to vector form (Fig. 6). This exposes
intra-loop parallelism to the compiler, and leads to a more
succinct (and arguably more readable) version of the kernel.

Following this change, the Intel SDK no longer performs
auto-vectorisation; rather than packing contiguous work-
items into SIMD execution units, each of the explicit vector
operations in the kernel is mapped directly to an SSE
instruction. Since each work-item now runs independently,
the neighbour list access is no longer a gather, and we
disable the neighbour list transposition (by setting W to 1,
as we did on the AMD CPU) to compensate.

The performance of this kernel on the E3-1240 is worse
than those the compiler was able to auto-vectorise, due to
SIMD inefficiencies: our explicit vectorisation only uses
four of the eight SIMD execution units available in AVX
(Fig. 7); and the majority of the arithmetic (the calculation

__kernel force_compute(float4* pos, float4* force...) {
int i = get_global_id(0);
float4 posi = pos[i];
float4 fi = (float4) (0.0, 0.0, 0.0, 0.0);
for (k = 0; k < number_of_neighbours[i]; k++) {

int j = neighbour_list_for_atom_i[w*k];
float4 del = posi - pos[j];
float rsq = dot(del, del);
float sr2 = 1.0 / rsq;
float sr6 = sr2 * sr2 * sr2;
float f = sr6 * (sr6 - 0.5) * sr2;
f = (rsq < cutoff) ? f : 0.0;
fi += del * f;

}
force[i] = fi;

}

Figure 6. OpenCL code-snippet for a kernel using vector arithmetic.

x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

z0 z1 z2 z3 z4 z5 z6 z7

x0 y0 z0 0 0 0 0 0

delx0 dely0 delz0 0 0 0 0 0

rsq0 rsq0 rsq0 rsq0 0 0 0 0

rsq0 rsq1 rsq2 rsq3 rsq4 rsq5 rsq6 rsq7

Explicit Vectorisation

Implicit Vectorisation

= 1 Work-Item

Figure 7. Comparison of implicit and explicit vectorisation, for 8-wide
SIMD.

of the force, based on rsq) remains scalar. On the A8-3850,
performance is improved by 1.3x, since this is the first kernel
for which the AMD SDK emits any vector instructions.

On the GPUs, the mapping of work-items to SIMD units
is unchanged, and we make no changes to the neighbour list
transposition. We would thus expect to see no performance
impact; the compilers convert each of the vector operations
in the kernel into a set of four scalar operations, and then
combine contiguous work-items as before. However, we see
slightly worse performance across all GPU hardware, due
to our use of the dot product function to calculate rsq. This
introduces two additional instructions per loop iteration; the
compiler does not know that the last element of the float4
is 0, and so includes it in the dot-product.

5) Loop Unrolling: Unrolling the loop over neighbours
in our explicit vectorisation kernel, such that it computes
the force between i and several neighbours simultaneously,
allows us to regain lost SIMD efficiency. Theoretically, the
compilers could employ such an optimisation themselves,
but we found that this is not yet the case.

Table IV lists the speed-ups for two alternative unrolling

Table IV
PERFORMANCE IMPACT OF UNROLLING.

Device 4-way 8-way
Intel Xeon E3-1240 1.42x 1.44x
AMD A8-3850 2.58x 2.36x
Intel HD4000 0.91x 0.87x
AMD HD6550D 1.32x 1.86x
Nvidia Tesla C1060 0.91x 0.92x
Nvidia Tesla C2050 1.17x 0.93x
Nvidia GTX 680 1.10x 0.89x
AMD FirePro V7800 1.78x 1.94x

E3-1240 A8-3850 HD4000 HD6550D C1060 C2050 GTX680 V7800

2

4

6

8

10

Device

S
p
ee
d
-u
p
(x
)

Baseline Transpose Vector Gather

Explicit Vec. 4-way Unrolling 8-way Unrolling

Figure 8. Comparison of speed-ups for each approach on all architectures.

factors (4 and 8), relative to the previous best approach (i.e.
vector gather, with scalar arithmetic). For 8-way unrolling,
we use float8 types, to explore the potential performance
benefits of AVX instructions on CPUs; for 4-way unrolling,
we use float4 types. To handle the case where the number
of loop iterations does not divide exactly by 4 or 8, we pad
an atom’s neighbour list with dummy atoms.

Both CPUs benefit from 4-way unrolling, due to running
all SIMD instructions at 100% efficiency. Unrolling also
exposes more parallelism to the very-long-instruction-word
(VLIW) architecture of AMD GPUs, which see a similar
performance increase. The performance impact of unrolling
on other architectures is inconsistent, and further investiga-
tion into this matter is necessary.

8-way unrolling is more efficient than 4-way unrolling
on the AMD GPUs, again because more parallelism is
exposed to the underlying microarchitecture. It does not,
however, lead to efficient utilisation of AVX on the E3-1240.
Examination of the assembly generated by the Intel SDK
(Appendix A) reveals that the compiler emits an inefficient
instruction sequence for the AoS-to-SoA transpose; instead
of using vector shuffle instructions to permute the gathered
AoS data, as it does when auto-vectorising the kernel, it uses
scalar instructions to build the SoA data one element at a
time. The A8-3850 also experiences a slow-down, but this
is because it does not support AVX instructions.

6) Summary: The graph in Fig. 8 presents the total
performance improvement of our optimisations, relative to
the original scalar baseline code. This performance improve-
ment is cumulative, since each optimisation is built upon
the previous version; the only exception to this is 8-way
unrolling, which replaces 4-way unrolling. The speed-up of
our best kernel (i.e. explicit vectorisation with unrolling) is
consistently greater than 2x across all architectures.

Generally speaking, the GPUs see more benefit from the
memory optimisations while the CPUs see more benefit from
explicit vectorisation. This reflects both the simpler cores
of GPUs (which are more sensitive to memory latencies,
and are thus more impacted by the original memory access
pattern) and the immaturity of OpenCL compilers for CPUs.
AMD GPUs are the only architecture to benefit significantly
from both types of optimisation (with a speed-up of ≈ 11x).

However, where a code change does not improve perfor-
mance, it does not significantly degrade it. These results thus
show that it is possible to accelerate OpenCL code without
focusing on any particular microarchitecture, and demon-
strates the performance portability of our optimisations.

B. Neighbour List Build

The core behaviour of the neighbour list build is very similar
to that of force compute; each work-item computes the
distance between an atom and a set of potential neighbours,
and compares that distance to the cut-off. We optimise this
using float4 vector types, as we did for force compute.
However, instead of updating forces, each work-item ap-
pends the indices of those atoms that pass the cut-off check
to a list – an operation that does not map well to OpenCL.

For serial code, where the lists for each atom are built
one after the other, each index can be written to memory
sequentially; further, if the amount of memory allocated
for the neighbour list is too small, it can be reallocated.
OpenCL does not support the allocation of device memory
within kernels, and assigning one work-item per atom leads
to all neighbour lists being built in parallel; the starting
offset of each neighbour list must be known ahead of time.
In our code, we allocate enough memory for each atom to
store some maximum number of neighbours (derived from
simulation parameters), and calculate the offsets accordingly.

C. Communication

The MPI communication found in miniMD can be split into
four components. As atoms move during a simulation, they
may move from one node to another – this is known as atom
exchange. Some atom-pairings may cross node boundaries
(i.e. the force acting on atom i may depend on atom j, which
exists on another node). Following atom exchange, miniMD
thus builds lists of two kinds of atoms near the borders of a
node’s subvolume; (1) dependent atoms, which require some
force contribution from atoms on another node; and (2) ghost
atoms, which exist on another node and may contribute to

the force acting on dependent atoms. Prior to force compute,
each node sends the positions of its dependent atoms to
neighbouring nodes (position communication); and, after the
force compute, each node receives some force contribution
from its neighbouring nodes (force communication).

Exchange and borders pose a similar challenge to OpenCL
as the neighbour list build, since the number of atoms each
work-item appends to the list (of atoms being exchanged or
at the borders) is not known ahead of time. The packing
and unpacking of messages for position and force commu-
nication is much simpler, and the transfer of the packed
messages can be hidden behind useful work; however, the
current communication scheme used by miniMD imposes
an ordering on the sending and receiving of these messages,
which complicates matters.

Our current implementation does not implement any of
these components in OpenCL. Instead, we make use of the
default implementation provided by the original miniMD,
with device-to-host and host-to-device transfers either side.
This is likely to be a performance bottleneck for discrete
GPUs, due to the latency and bandwidth of the PCIe bus. The
performance of the code executing on CPUs and integrated
GPUs will also be decreased, although to a lesser extent;
our code does not make any distinction between devices,
and each transfer results in a memcpy on these platforms.
There is a clear need to port these components to OpenCL
in future work – in addition to decreasing the amount of
data transferred between host and device, the operations
themselves would benefit from executing in parallel.

D. Other Components

The remaining components of the simulation are uninter-
esting in a performance portability study. One kernel zeroes
the forces of each atom (prior to the force compute); another
updates atom positions, based on their current velocities; and
the final kernel updates atom velocities based on the forces
acting upon them. Representing these streaming operations
in OpenCL such that their performance scales with memory
bandwidth (as expected) is trivial.

V. COMPARISON WITH NATIVE IMPLEMENTATIONS

A performance-portable code is clearly more desirable if its
performance is competitive with that of native implementa-
tions. We therefore compare our OpenCL implementation to
(a) the original miniMD, (b) a hand-vectorised implemen-
tation using AVX instructions on the Intel Xeon, and (c)
LAMMPSCUDA on the C1060 and C2050.

A. CPU Comparison

Table V compares the performance of our OpenCL imple-
mentation of miniMD with the two native C++ implemen-
tations, executing on the Intel E3-1240. In keeping with
the rest of the paper, we present OpenCL results from the
Intel SDK; we also present results from pairing the AMD

Table V
COMPARISON OF INTEL CPU EXECUTION TIMES (IN SECONDS)

Implementation Force Neigh Comm Other Total Speed-up
(Orig.) (AVX)

Original C++ 2.77 0.26 0.19 0.21 3.42 1.00x 0.35x
C++ with AVX 0.76 0.11 0.12 0.20 1.19 2.87x 1.00x
OpenCL (Intel) 1.41 0.60 0.25 0.17 2.43 1.41x 0.49x
OpenCL (AMD) 1.33 0.58 0.16 0.17 2.25 1.52x 0.53x

SDK with Intel hardware, as a means of comparing the two
compilers. For both SDKs, we use the kernel with explicit
vectorisation and 4-way unrolling.

The AMD SDK provides the fastest runtime for OpenCL,
beating the Intel SDK by approximately 10%. This is
also 1.5x faster than the original C++ version of miniMD,
demonstrating that OpenCL is a suitable development tool
for utilising the SIMD architectures of modern CPUs. How-
ever, our OpenCL implementation is 2x slower than the
heavily-optimised version of miniMD which we developed
in previous work [26]. This code employs a number of
novel SIMD and threading optimisations, which give it a
significant advantage over OpenCL; its force compute and
neighbour list build are 2x and 6x faster respectively.

The biggest remaining causes of poor performance in
our OpenCL implementation are: firstly, that the AVX code
generated by current OpenCL compilers is inefficient; and
secondly, that both the original miniMD and our optimised
AVX code make use of N3, and thus do half as much
work during the force compute and neighbour list build.
As discussed in Section IV, making use of N3 in OpenCL
is difficult, due to restrictions in the programming model
regarding work-item synchronisation.

A relatively new addition to the OpenCL standard is
the ability to fission (i.e. split) a device into multiple sub-
devices, and issue work to them separately. We can leverage
the existing MPI parallelism in miniMD, combined with
fission, to permit the use of N3 on CPUs; specifically, we
can start 8 MPI ranks and assign one OpenCL sub-device to
each. We consider this optimisation only because it does not
impact performance portability – although we re-introduce
the neighbour force updates (Lines 15–17, from Fig. 2), we
guard them with a pragma (i.e. #ifdef N3), and the code
changes necessary to support fission are minimal, affecting
only the initial OpenCL setup code. Fission is not (currently)
supported by GPUs, but Kepler’s ability to support multiple
MPI tasks feeding work to the same GPU could be used to
the same effect.

For the Intel SDK, using fission improves force compute
performance by 1.1x, and neighbour list build performance
by 2x, increasing the speed-up over the original miniMD
to 1.7x. For the AMD SDK, using fission results in worse
performance than the original miniMD; although the im-
provements to the force compute and neighbour list kernels
are similar, communication costs become 9x more expen-

Table VI
COMPARISON OF NVIDIA GPU EXECUTION TIMES (IN SECONDS)

Device Implementation Force Neigh Comm Other Total Speed-up

C1060 CUDA 0.67 0.35 0.06 0.09 1.18 1.00x
OpenCL 1.69 0.31 0.34 0.07 2.40 0.49x

C2050 CUDA 0.36 0.22 0.05 0.06 0.70 1.00x
OpenCL 0.58 0.12 0.28 0.05 1.03 0.68x

sive, possibly due to scheduling conflicts between the threads
spawned by MPI and AMD’s OpenCL runtime.

B. GPU Comparison

Table VI compares the performance of our OpenCL im-
plementation of miniMD (using the kernel with explicit
vectorisation and 4-way unrolling) and LAMMPSCUDA.

For the complete application, our implementation is 2x
slower than CUDA on the C1060, and 1.5x slower than
CUDA on the C2050. A large portion of this difference can
be attributed to the poor communication scheme used by our
OpenCL code, which is almost 6x slower than that used by
LAMMPSCUDA. The CUDA code executes all communica-
tion routines on the device and, since we are using a single
node, is able to avoid all PCIe communication; our OpenCL
code, on the other hand, executes all communication routines
on the host.

For the force compute kernel alone, our OpenCL im-
plementation is 2.5x and 1.6x slower than CUDA on the
C1060 and C2050 respectively. This is partly due to doc-
umented differences between Nvidia’s CUDA and OpenCL
compilers [11], [12]; despite the programming models and
languages being very similar, the CUDA compiler emits
more efficient code. LAMMPSCUDA also makes use of
read-only texture memory, which is cached, to store atom
positions. Support for texture memory could be added to
our kernel and guarded with pragmas, enabled for GPUs in
a similar way to how fission is enabled for CPUs – we intend
to explore this option in future work.

VI. DISCUSSION

Many legacy scientific and engineering applications are not
performance-optimal, achieving a very low percentage of
peak FLOP/s even on a single node (i.e. before perfor-
mance degradations due to less-than-perfect node scaling).
Traditionally, application scientists have been reluctant to
optimise codes for two reasons: (1) tuning for a specific
platform reduces an HPC site’s ability to move between
vendors; and (2) the ability to maintain code is seen as more
important than achieving the best possible performance.

However, studies performed by both academia and indus-
try have shown that sections of these codes are amenable
to GPU acceleration – and that programmers are willing to
spend time porting kernels to CUDA (or selecting appro-
priate OpenACC [27] pragmas) in exchange for significant
speed-ups. The results in this paper (specifically, that our

float8 fxjtmp = (f[j1].x, f[j2].x, f[j3].x, f[j4].x,
f[j5].x, f[j6].x, f[j7].x, f[j8].x);

float8 fyjtmp = (f[j1].y, f[j2].y, f[j3].y, f[j4].y,
f[j5].y, f[j6].y, f[j7].y, f[j8].y);

float8 fzjtmp = (f[j1].z, f[j2].z, f[j3].z, f[j4].z,
f[j5].z, f[j6].z, f[j7].z, f[j8].z);

Figure 9. OpenCL code-snippet for gathering x, y and z positions in the
kernel with 8-way unrolling.

OpenCL implementation is 1.7x faster than the original
miniMD) suggest that, for HPC sites starting from a sub-
optimal scalar baseline code, OpenCL offers an opportunity
to explore the potential of new architectures while also
improving performance on their existing hardware.

We feel it is unlikely that OpenCL codes will exceed the
performance of heavily optimised native implementations,
but there is hope that future compiler releases will de-
crease the performance gap between them. The performance
of scalar kernels should improve as the auto-vectorisation
capabilities of Intel’s compiler mature; OpenCL is well-
suited to expressing parallelism and vectorisation opportuni-
ties, so these kernels may even out-perform auto-vectorised
C and C++ codes. For kernels employing explicit vector
types, the generation of inefficient instruction sequences
for gather/scatter operations currently leads to poor per-
formance, but this too could be improved. OpenCL lacks
gather/scatter and transpose constructs for its vector types,
and so we implement our gather of positions as shown in
Figure 9; neither the AMD or Intel compiler recognises
that this can be performed as an in-register AoS-to-SoA
transpose, and we are currently investigating alternative
ways of expressing this operation in OpenCL.

VII. CONCLUSIONS

In this paper, we report on the development of a
performance-portable OpenCL implementation of Sandia’s
miniMD benchmark. We show that the performance bot-
tlenecks of the force compute kernel are the same across
several architectures, and that the optimisations that we
apply to the original scalar code improve performance by
more than 2x across a wide range of hardware types from
different vendors: CPUs and integrated GPUs from AMD
and Intel; and discrete GPUs from AMD and Nvidia.

Our complete OpenCL implementation is 1.7x faster than
the original miniMD code running on the same hardware,
and at most 2x slower than “native” implementations highly
optimised for particular platforms. Whether this performance
compromise is an acceptable penalty for increased code
portability is open to debate, but the results in this paper sug-
gest that OpenCL is a suitable development tool to bridge the
gap between architectures – enabling HPC sites to develop
codes that exhibit good levels of performance, across a wide
variety of hardware, without sacrificing maintainability.

ACKNOWLEDGEMENTS

The authors thank Chris Hughes and Mikhail Smelyanskiy
of Intel Corporation for their valuable comments and sug-
gestions. Thanks also to Sandia National Laboratories for
access to the Teller Testbed system; Teller is provided under
the United States Department of Energy ASCR and NNSA
Testbed Computing Program.
This research is supported in part by The Royal Society
through their Industry Fellowship Scheme (IF090020/AM).
Access to hardware is made possible through collabora-
tion with the UK Atomic Weapons Establishment under
grants CDK0660 (The Production of Predictive Performance
Models for Future Computing Requirements) and CDK0724
(AWE Technical Outreach Programme).

CODE ACCESS

Our port of miniMD is available for download from:
go.warwick.ac.uk/pcav/areas/hpc/download/minimd opencl

REFERENCES

[1] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon,
“Top 500 Supercomputer Sites,” http://top500.org/, November
2011.

[2] R. Bordawekar, U. Bondhugula, and R. Rao, “Believe it
or Not! Multi-core CPUs Can Match GPU Performance
for FLOP-intensive Application!” IBM Research Division,
Thomas J. Watson Research Center, Yorktown Heights, NY,
Tech. Rep. RC24982, 2010.

[3] ——, “Can CPUs Match GPUs on Performance with Pro-
ductivity?: Experiences with Optimizing a FLOP-intensive
Application on CPUs and GPU,” IBM Research Division,
Thomas J. Watson Research Center, Yorktown Heights, NY,
Tech. Rep. RC25033, 2010.

[4] R. Vuduc, A. Chandramowlishwaran, J. Choi, M. E. Guney,
and A. Shringarpure, “On the Limits of GPU Acceleration,”
in Proceedings of the USENIX Workshop on Hot Topics in
Parallelism, Berkeley, CA, 14-15 June 2010.

[5] V. W. Lee et al., “Debunking the 100X GPU vs. CPU Myth:
An Evaluation of Throughput Computing on CPU and GPU,”
in Proceedings of the ACM/IEEE International Symposium on
Computer Architecture, Saint-Malo, France, 21-23 June 2010,
pp. 451–460.

[6] Khronos Group, “OpenCL 1.2 Specification,” http://www.
khronos.org/registry/cl/specs/opencl-1.2.pdf, November 2011.

[7] M. Heroux and R. Barrett, “Mantevo Project,” http://software.
sandia.gov/mantevo/, May 2011.

[8] M. A. Heroux et al., “Improving Performance via Mini-
applications,” Sandia National Laboratories, Albuquerque,
NM, Tech. Rep. SAND2009-5574, 2009.

[9] S. Plimpton et al., “LAMMPS Molecular Dynamics Simula-
tor,” http://lammps.sandia.gov/, May 2011.

[10] S. Plimpton, “Fast Parallel Algorithms for Short-Range
Molecular Dynamics,” Journal of Computational Physics, vol.
117, pp. 1–19, 1995.

[11] P. Du et al., “From CUDA to OpenCL: Towards a
Performance-Portable Solution for Multi-platform GPU Pro-
gramming,” Knoxville, TN, Tech. Rep. UT-CS-10-656, 2010.

[12] K. Komatsu et al., “Evaluating Performance and Portability of
OpenCL Programs,” in Proceedings of the Fifth International
Workshop on Automatic Performance Tuning, June 2010.

[13] R. Weber, A. Gothandaraman, R. J. Hinde, and G. D.
Peterson, “Comparing Hardware Accelerators in Scientific
Applications: A Case Study,” IEEE Transactions on Parallel
and Distributed Systems, vol. 22, no. 1, pp. 58–68, January
2011.

[14] S. Seo, G. Jo, and J. Lee, “Performance Characterization of
the NAS Parallel Benchmarks in OpenCL,” in Proceedings of
the International Symposium on Workload Characterization,
Austin, TX, 6–8 November 2011, pp. 137–148.

[15] S. J. Pennycook et al., “An Investigation of the Performance
Portability of OpenCL,” Journal of Parallel and Distributed
Computing, in press.

[16] S. Olivier, J. Prins, J. Derby, and K. Vu, “Porting the
GROMACS Molecular Dynamics Code to the Cell Proces-
sor,” in Proceedings of the IEEE International Parallel and
Distributed Processing Symposium, Long Beach, CA, 26-30
March 2007.

[17] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General
Purpose Molecular Dynamics Simulations Fully Implemented
on Graphics Processing Units,” Journal of Computer Physics,
vol. 227, no. 10, pp. 5342–5359, 2008.

[18] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington,
“Implementing Molecular Dynamics on Hybrid High Perfor-
mance Computers – Short Range Forces,” Computer Physics
Communications, vol. 182, pp. 898–911, 2011.

[19] C. R. Trott, “LAMMPScuda - A New GPU-Accelerated
Molecular Dynamics Simulations Package and its Applica-
tion to Ion-Conducting Glasses,” Ph.D. dissertation, Ilmenau
University of Technology, 2011.

[20] D. Case et al., “AMBER 11,” http://www.ambermd.org, May
2011.

[21] J. C. Phillips, J. E. Stone, and K. Schulten, “Adapting
a Message-Driven Parallel Application to GPU-Accelerated
Clusters,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis, Austin, TX, 15-21 November 2008, pp. 1–9.

[22] M. J. Harvey, G. Giupponi, and G. D. Fabritiis, “ACEMD:
Accelerating Biomolecular Dynamics in the Microsecond
Time Scale,” Journal of Chemical Theory and Computation,
vol. 5, no. 6, pp. 1632–1639, 2009.

[23] J. Kim et al., “SnuCL: An OpenCL Framework for Hetero-
geneous CPU/GPU Clusters,” in Proceedings of the Interna-
tional Conference on Supercomputing, Venice, Italy, 25–29
June 2012, pp. 341–352.

[24] R. Karrenberg and S. Hack, “Improving Performance of
OpenCL on CPUs,” in Proceedings of the International Con-
ference on Compiler Construction, Tallinn, Estonia, March
2012, pp. 1–20.

[25] L. Verlet, “Computer “Experiments” on Classical Fluids. I.
Thermodynamical Properties of Lennard-Jones Molecules,”
Physical Review, vol. 159, no. 1, pp. 98–103, 1967.

[26] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A.
Jarvis, “Exploring SIMD for Molecular Dynamics, Using
Intel Xeon and Xeon Phi Processors,” unpublished.

[27] “OpenACC 1.0 Specification,” http://www.openacc.org/sites/
default/files/OpenACC.1.0 0.pdf, November 2011.

APPENDIX
ASSEMBLY GENERATED FOR GATHER OPERATIONS

Figures 10 and 11 list the assembly generated by the Intel
SDK for two of our kernels: the auto-vectorised vector
gather kernel, and the kernel with explicit vectorisation and
8-way unrolling, respectively. The instructions have been
re-ordered and grouped to improve readability, and any
instructions not directly related to the gather of positions
have been removed.

Both listings begin in the same way, loading the positions
of eight neighbours into eight 128-bit (XMM) registers.
These positions are stored in AoS format ({x, y, z, 0}) and
both pieces of assembly transpose the gathered positions into
SoA format ({x, x, ...}, {y, y, ...} and {z, z, ...}), storing
the result in three 256-bit (YMM) registers. During auto-
vectorisation, the compiler recognises that this operation
can be performed by an in-register AoS-to-SoA transpose,
emitting a sequence of 14 shuffle and permute instructions.
The sequence generated for our explicit vector kernel is
significantly less efficient, containing 37 instructions.

Each of the vinsertps instructions in Fig. 11 extracts
the x, y or z component from one XMM register (in
AoS), and inserts it into another (in SoA). The result is
six XMM registers, two for each of x, y and z, which
are then combined into three YMM registers using three
vinsertf128s. These inserts together account for 21 of
the 37 instructions.

The vinsertps instruction has the capability to extract
any 32-bit element from an XMM register, and we were
therefore surprised to see that each of its uses here extracts
the lowest 32 bits. This requires the generation of the 16
remaining instructions, to rearrange the XMM registers –
each vpshufd instruction moves an atom’s y component
to the lowest 32-bits of the register, and each vmovhlps
instruction does the same for z.

We believe that these behaviours are caused by a combi-
nation of compiler immaturity and the way in which we
have expressed the gather operation in OpenCL (Fig.9).
Future compiler releases, or an alternative representation
of the gather in code, may address these issues, leading to
considerably better performance for this kernel on hardware
supporting AVX instructions.

// Load {x, y, z, 0} for eight atoms.
vmovaps XMM7, XMMWORD PTR [R11 + R15]
vmovaps XMM9, XMMWORD PTR [R10]
vmovaps XMM10, XMMWORD PTR [R9]
vmovaps XMM11, XMMWORD PTR [R8]
vmovaps XMM12, XMMWORD PTR [RDI]
vmovaps XMM13, XMMWORD PTR [RSI]
vmovaps XMM14, XMMWORD PTR [RDX]
vmovaps XMM15, XMMWORD PTR [R12]

// Build SoA registers for x, y and z.
vperm2f128 YMM11, YMM11, YMM15, 32
vperm2f128 YMM9, YMM9, YMM13, 32
vshufps YMM13, YMM9, YMM11, 68
vperm2f128 YMM10, YMM10, YMM14, 32
vperm2f128 YMM7, YMM7, YMM12, 32
vshufps YMM12, YMM7, YMM10, 68
vshufps YMM14, YMM12, YMM13, -35
vpermilps YMM14, YMM14, -40
vshufps YMM12, YMM12, YMM13, -120
vpermilps YMM12, YMM12, -40
vshufps YMM9, YMM9, YMM11, -18
vshufps YMM7, YMM7, YMM10, -18
vshufps YMM7, YMM7, YMM9, -120
vpermilps YMM7, YMM7, -40

Figure 10. Assembly from our vector gather kernel.

// Load {x, y, z, 0} for eight atoms.
vmovdqa XMM3, XMMWORD PTR [R9 + R13]
vmovdqa XMM4, XMMWORD PTR [R9 + R13]
vmovdqa XMM6, XMMWORD PTR [R9 + R13]
vmovdqa XMM7, XMMWORD PTR [R9 + R13]
vmovdqa XMM8, XMMWORD PTR [R9 + R13]
vmovdqa XMM9, XMMWORD PTR [R9 + R13]
vmovdqa XMM11, XMMWORD PTR [R9 + R13]
vmovdqa XMM12, XMMWORD PTR [R9 + R13]

// Build SoA register for x component.
vinsertps XMM5, XMM4, XMM3, 16
vinsertps XMM5, XMM5, XMM6, 32
vinsertps XMM5, XMM5, XMM7, 48
vinsertps XMM10, XMM9, XMM8, 16
vinsertps XMM10, XMM10, XMM11, 32
vinsertps XMM10, XMM10, XMM12, 48
vinsertf128 YMM5, YMM10, XMM5, 1

// Build SoA register for y component.
vpshufd XMM13, XMM4, 1
vpshufd XMM14, XMM3, 1
vinsertps XMM13, XMM13, XMM14, 16
vpshufd XMM14, XMM6, 1
vinsertps XMM13, XMM13, XMM14, 32
vpshufd XMM14, XMM7, 1
vinsertps XMM13, XMM13, XMM14, 48
vpshufd XMM14, XMM9, 1
vpshufd XMM15, XMM8, 1
vinsertps XMM14, XMM14, XMM15, 16
vpshufd XMM15, XMM11, 1
vinsertps XMM14, XMM14, XMM15, 32
vpshufd XMM15, XMM12, 1
vinsertps XMM14, XMM14, XMM15, 48
vinsertf128 YMM13, YMM14, XMM13, 1

// Build SoA register for z component.
vmovhlps XMM4, XMM4, XMM4
vmovhlps XMM3, XMM3, XMM3
vinsertps XMM3, XMM4, XMM3, 16
vmovhlps XMM4, XMM6, XMM6
vinsertps XMM3, XMM3, XMM4, 32
vmovhlps XMM4, XMM7, XMM7
vinsertps XMM3, XMM3, XMM4, 48
vmovhlps XMM4, XMM9, XMM9
vmovhlps XMM6, XMM8, XMM8
vinsertps XMM4, XMM4, XMM6, 16
vmovhlps XMM6, XMM11, XMM11
vinsertps XMM4, XMM4, XMM6, 32
vmovhlps XMM6, XMM12, XMM12
vinsertps XMM4, XMM4, XMM6, 48
vinsertf128 YMM3, YMM4, XMM3, 1

Figure 11. Assembly from our kernel with 8-way unrolling.

