
http://wrap.warwick.ac.uk

Original citation:
Chen, X. and Jarvis, Stephen A. (2009) Analysing BitTorrent's seeding strategies. In:
Proceedings of the 7th IEEE/IFIP International Conference on Embedded and
Ubiqutious Computing (EUC-09), Vancouver, Canada, 29-31 Aug, 2009. Published in:
International Conference on Computational Science and Engineering, 2009, Vol.2 pp.
140-149.

Permanent WRAP url:
http://wrap.warwick.ac.uk/47501

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Copyright statement:
“© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/9560599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/47501
mailto:publications@warwick.ac.uk

Analysing BitTorrent’s Seeding Strategies

Xinuo Chen

Department of Computer Science

University of Warwick

Coventry, U.K.

xinuo.chen@dcs.warwick.ac.uk

Stephen A. Jarvis

Department of Computer Science

University of Warwick

Coventry, U.K.

saj@dcs.warwick.ac.uk

Abstract— BitTorrent is a typical peer-to-peer (P2P) file dis-

tribution application that has gained tremendous popularity in

recent years. A considerable amount of research exists regard-

ing BitTorrent’s choking algorithm, which has proved to be

effective in preventing freeriders. However, the effect of the

seeding strategy on the resistance to freeriders in BitTorrent

has been largely overlooked. In addition to this, a category of

selfish leechers (termed exploiters), who leave the overlay im-

mediately after completion, has never been taken into account

in the previous research. In this paper two popular seeding

strategies, the Original Seeding Strategy (OSS) and the Time-

based Seeding Strategy (TSS), are chosen and we study via

mathematical models and simulation their effects on freeriders

and exploiters in BitTorrent networks. The mathematical

model is verified and we discover that both freeriders and ex-

ploiters impact on system performance, despite the seeding

strategy that is employed. However, a selfish-leechers thre-

shold is identified; once the threshold is exceeded, we find that

TSS outperforms OSS – that is, TSS reduces the negative im-

pact of selfish lechers more effectively than OSS. Based on

these results we discuss the choice of seeding strategy and spe-

culate as to how more effective BitTorrent-based file distribu-

tion applications can be built.

Keywords-BitTorrent; Seeding strategy; peer-to-peer; file

distribution

I. INTRODUCTION

In a traditional client/server file distribution paradigm, a
server takes responsibility for transmitting data to all clients.
This service model is limited in scalability, especially when
the files are large. As a successful Peer-to-Peer file-sharing
system, BitTorrent [3], solves this problem by dividing a
large file into many small sized blocks and encouraging cli-
ents to exchange blocks during their downloading processes.
This mechanism reduces load on the server and improves the
system service capacity.

Like many other peer-to-peer systems, BitTorrent faces
the challenge of freeriders [4, 5], which are peers who never
upload blocks to others. A peer can act as a freerider by set-
ting the upload rate to a very low value or even zero. Fortu-
nately, BitTorrent can effectively penalise those freeriders
using its Tit-For-Tat (TFT) policy that determines how peers
with incomplete files (called leechers) exchange blocks.
With the TFT policy, all leechers exchange blocks only with
those who upload to them at a higher rate, thus freeriders
cannot obtain blocks because they never upload. While most
previous research [3, 5-7] focuses on the behaviour of leech-

ers, the role of the seeds (peers with complete files), in the
process of preventing freeriders has been largely overlooked.

Since seeds own all the data blocks, they are dedicated to
uploading to others. Seeds use a seeding strategy to decide
which leechers to serve. Currently, a widely used seeding
strategy, the Original Seeding Strategy (OSS), ensures that
seeds upload to leechers which have the highest download
rates, in the hope that new seeds can be produced quickly,
which can then serve others. However, when freeriders with
relatively high download bandwidths exist in the overlay,
due to the mechanism of OSS, there is a possibility that those
freeriders dominate the resources of seeds and delay the
downloading processes of other unselfish leechers. Thus the
OSS strategy may benefit freeriders rather than necessarily
fostering contribution. In order to solve this problem caused
by freeriders, a new seeding strategy, called the Time-based
Seeding Strategy (TSS), was proposed in [8]. By employing
this strategy, seeds serve each leecher in turn and for the
same amount of time so that no single leecher (including
freeriders) can dominate the resources of seeds. However,
the negative side of TSS is that the speed of producing fresh
seeds in the overlay is slowed down and eventually the over-
all performance may be impacted. Due to the lack of a com-
prehensive analysis of TSS in [8], it is not clear whether TSS
is better than OSS in preventing freeriders and this remains
an open question.

Furthermore, an issue largely ignored is that the newly
generated seeds can choose not to act as expected – they may
stay for only a short time [9, 10] or simply quit the system
once they have obtained the whole file. In this paper, we
term these types of peers exploiters, i.e., they serve others
while downloading, but quit the overlay immediately after its
completion. So far little attention has been paid to the influ-
ence of exploiters, therefore it is unclear how OSS and TSS
are resilient to their behaviour.

In order to answer these questions and direct the selection
of seeding strategy for BitTorrent clients, we conduct a com-
prehensive analysis of OSS and TSS. First we establish a
mathematical model to present OSS’s effectiveness in reduc-
ing the impact of selfish leechers (freeriders and exploiters)
in a homogeneous environment where all peers have identi-
cal downlink and uplink bandwidths. We then introduce Bit-
Torrent simulation experiments and provide experimental
results that verify our model and compare TSS with OSS.
The investigation is then extended to a heterogeneous envi-
ronment. We show that under either OSS or TSS, freeriders
and exploiters degrade system performance. If the number of

selfish leechers increases, the performance of OSS-led Bit-
Torrent drops faster but is still better than a TSS-led version.
However, there is a threshold for the scale of the selfish
leechers. Once the threshold is met, TSS performs better than
OSS and presents a predominate resistance to freeriders and
exploiters.

The remainder of this paper is organised as follows. Sec-
tion II presents an overview of BitTorrent and documents
related work; Section III analyses the different seeding
strategies using a mathematical model; Section IV describe
our simulation methodology; Section V and VI discuss the
simulation results; finally Section VII concludes the paper
and describes future work.

II. BACKGROUND AND RELATED WORK

BitTorrent employs a series of sophisticated mechanisms
to encourage peers to upload data to each other, and thus
achieves scalable and highly efficient content distributions.
In this section, we first give an overview of BitTorrent. Sev-
eral key factors behind the success of the BitTorrent proto-
col, such as the choking algorithm and the local-rare-first
mechanism, are already described in previous research [2, 3,
7, 8, 11]. We thus present only the two popular seeding
strategies, OSS and TSS, in detail. Throughout this paper,
we use terminology first introduced in [8].

A. BitTorrent Mechanism

Prior to the content distribution, the provider splits the
file into a number of pieces and obtains the SHA-1 hashes
for all pieces. Together with the IP address and port number
of the tracker, the provider encapsulates the piece informa-
tion into a torrent. Normally the provider itself will then
connect to the tracker and thus become the initial seed. After
peers retrieve the torrent, they obtain the IP address and port
number of the tracker and then join the BitTorrent overlay
through the tracker. From this time point, peers become
leechers or if some peers already have the complete set of
pieces when they join, they become initial seeds (we do not
consider this case in our research). Every peer updates its
own peer set by obtaining a peer list, which contains a ran-
dom set of peers (their IP addresses and port numbers), from
the tracker at a certain time interval. Seeds upload data to
leechers using the seeding strategy, while leechers interact
with each other, i.e., decide who to download data from or
who to upload data to, by executing the choking algorithm.
When starting to download data from others, leechers decide
which file piece to retrieve by following the guidance of the
local-rarest-first algorithm (LRF). Once a leecher finishes
downloading, it either rejoins the overlay to be a seed or
leaves immediately so becoming an exploiter.

B. Seeding Strategy

The initial seed and the regular seeds that come from
leechers all have a complete set of file pieces and thus do not
need any data from others. Note that the choking algorithm
uses uploading rates of leechers to decide whom to upload
to, thus it is not applicable for seeds anymore because seeds
cannot calculate other leechers’ uploading rates. In order to
contribute the distribution overlay optimally, seeds employ

seeding strategies. There are currently two deployed seeding
strategies: the original seeding strategy (OSS) and the time-
based seeding strategy (TSS). These are described in the
following text and further analysed in Section III.

OSS (see algorithm 1) has been employed since BitTor-
rent was invented [3]. In the BitTorrent distribution process,
there are seeds that always stay in the overlay for a limited
time period [7, 11]. Thus, how to force seeds to maximally
contribute to the overlay before they leave becomes a prob-
lem that OSS aims to solve. In following OSS, seeds upload
data to leechers whose downloading rates are highest. In
other words, seeds intend to upload data as quickly as possi-
ble. There are three aspirations behind this process: 1. seeds
can deliver a maximum number of pieces to leechers; 2.
leechers that download from seeds can become new seeds
quickly; 3. new seeds can continue to serve the remaining
leechers.

 TSS (see algorithm 2) was introduced in the official Bit-
Torrent client 4.0.0 [8]. In following TSS, seeds upload data
to leechers uniformly. In other words, seeds serve each of
their neighbour leechers in turn based on the time stamp of
last service, regardless of the leechers’ download rates. A
seed can perform s parallel uploads. After a seed has been
uploading data to a leecher for sixty seconds (typically), it
chokes the leecher and selects another leecher to serve. In
this manner, all leechers that are connected to a seed will be
served for similar time period. The purposes of this strategy

Algorithm 1: OSS, invoked by seeds every 10 seconds
remove optimistically unchoked leecher from the inter-

ested_leecher_list

for every leecher in the interested_leecher_list do

calculate the rate (download_rate) at which the leecher

downloads from this_local_seed

end for

sort interested_leecher_list in descending order based on the

leecher’s download_rate

for 𝑖 ← 1 to 3 do

 unchoke interested_leecher_list(𝑖)
end for

Algorithm 2: TSS, invoked by seeds every 10 seconds
global variable: 𝑡
sort the interested_leecher_list based on the leecer’s last

unchoke time, with the most recently unchoked leecher last

if 𝑡 = 0 then

for 𝑖 ← 1 to 3 do

 unchoke interested_leecher_list(𝑖)
 end for

int 𝑟 ← random integer between 4 and n (n is the number

of interested leechers)

 unchoke interested_leecher_list(𝑟)

 𝑡 ← 𝑡 + 1

else if 𝑡 = 2

 for 𝑖 ← 1 to 4 do

 unchoke interested_leecher_list(𝑖)
 end for

 𝑡 ← 0

end if

is: 1. To prevent any single leecher from monopolising
seeds; 2. To reduce the amount of duplicate data a seed
needs to upload before it contributes a full set of file pieces
to the overlay.

C. Related Work in the Analysis of BitTorrent

There is a large body of literature on analysing BitTor-
rent’s mechanism.

Qiu et al. [7] construct a fluid model for BitTorrent and
indicates that the mean download completion time of leech-
ers does not relate to the peer arrival rate. However, the suc-
cess of the distribution of a file is related to the number of
freeriders in the overlay.

Fan et al. [12] investigate how BitTorrent might imple-
ment incentives and thus prevent freeriders. Felber et al. [13]
conduct a simulation to investigate how BitTorrent-like pro-
tocols handle flash-crowds.

Bharambe et al. [2] use an event-driven simulator to
comprehensively evaluate the performance impacts from the
core algorithms that `BitTorrent employs. They find that the
choking algorithm is very effective and the local-rarest-first
algorithm outperforms alternative piece selection strategies.
Their work also makes clear that the initial seed is very im-
portant and it should distribute a full set of pieces into the
overlay as quickly as possible.

Iza et al. [9] conduct a comprehensive analysis on the
data that is derived from the tracker log of the most popular
Redhat 9 torrent. They observe that the mean downloading
rate of leechers is 50KB/s, which indicates the good connec-
tivity that most leechers have.

Pouwelse el al. [10] present a measurement study on
BitTorrent. The major contribution of their work is the
analysis of the flashcrowd effect, i.e., the phenomenon of the
sudden popularity of a new file distribution.

Massoulie et al. [14] introduce a probability model of
coupon replication systems. The major conclusions, which
are directly related to BitTorrent, are 1. the peer arriving or
departing rate does not affect the system performance sig-
nificantly; 2. the efficiency of the distribution does not criti-
cally depend on the local-rarest- first algorithm.

Our work on BitTorrent differs from previous work in
the following respects. First, we identify a special kind of
selfish leecher, which we term an exploiter. We show the
impact of these on system performance; degradation is less
sever than that caused by freeriders. Second, we analyse two
seeding strategies (OSS and TSS) in detail and focus on their
resistance to the selfish lechers, which no previous research
has conducted. Finally, we show through experimentation
that choosing seeding strategy to adapt to the scale of the
selfish leechers in the overlay is very important. We thus
propose in our future work that a mechanism is needed to
detect the scale of the selfish leechers so that the seeding
strategy can be loaded or changed dynamically.

III. MODEL FOR SEEDING STRATEGY

As described in Section II, there are currently two kinds
of seeding strategies, the original seeding strategy (OSS) and
the time-based seeding strategy (TSS), which have been de-
ployed through different BitTorrent client applications. In

this section, we present a mathematical analysis to investi-
gate the impact that freeriders or exploiters have on the mean
download completion time of unselfish leechers if OSS is
employed.

A. Metrics, Assumptions and Scenarios

Leechers join a BitTorrent network in order to obtain a
complete shared file from the overlay. They have one major
concern - the time they need to spend to complete the
downloading. Since uploading data is the driving force of a
BitTorrent system, unselfish leechers are important to the
overlay and the quality of the service that they get from the
distribution should be kept at a certain level; otherwise, the
fairness in the system is violated. Thus, we choose the mean
download completion time of unselfish leechers, denoted by
𝑡𝑢 , in the system as the metric of our mathematical analysis.
Using this metric, we can investigate how freeriders and ex-
ploiters affect the fairness and the benefits that unselfish
leechers obtain if BitTorrent employs OSS.

Another concern that leechers have is whether a complete
set of blocks of the file can be finally obtained. [7] suggests
that the probability of a leecher finding a desired block
among its neighbours is very close to one, therefore, for sim-
plicity of analysis, the first assumption that we make is that
at any point in time, the network owns the complete set of
blocks of a file.

The environment in which a file is distributed is assumed
to be homogeneous. This is the second assumption that we
make. Initially, there are 𝑁 leechers and one initial seed. All
peers have identical uplink bandwidth of 𝑢 , but various
downlink bandwidth of 𝑑𝑖 . The size of the file being distrib-
uted is 𝐴.

Two other assumptions are made:

 A peer’s downloading bandwidth is not the bottle-
neck of data transfer. The experimental results in [7]
suggest that the mean utilization of 𝑑𝑖 is practically
quite low (20-40%). Therefore, it is reasonable to as-
sume that the downlink bandwidth of each leecher
will not constrain the downloading process.

 Peers have the same uplink bandwidths u, and the
mean utilisation of peers’ uplink bandwidths is
100% [2]. We will consider the heterogeneous set-
ting where the uplink bandwidths are not equal in
our simulation study.

Three scenarios are considered in the model. All leechers
in the first scenario are unselfish leechers. In the second sce-
nario, a number 𝐹 of leechers are freeriders and the remain-
der of the leechers are unselfish. In the final scenario, only
unselfish leechers and a number 𝐸 of exploiters are present
in the network. The different 𝑡𝑢 for the three scenarios are
calculated to show whether OSS can guarantee fairness in
the system.

B. The Model

In all three scenarios, unselfish leechers act as seeds for a
mean time 𝑇𝑠 after finishing downloading, regardless of
whether they are being served by seeds. 𝑇𝑠 is assumed to be
a constant value, which is long enough to let new seeds con-
tribute sufficient blocks to the network [2, 11]. Let 𝑇𝑠0 de-

note the staying time of the initial seed. Freeriders and ex-
ploiters have higher downlink bandwidths than unselfish
leechers. The mean download time of exploiters is denoted
by 𝑇𝐸 .

In the first scenario, all the unselfish leechers keep up-
loading to others before they become seeds. The amount of
data that they upload is 𝑢𝑁𝑡𝑢 . After that they become seeds,
they stay for a mean period of time 𝑇𝑠, hence, the amount of
data they send out to the system is 𝑢𝑁𝑡𝑢 . The initial seed
contributes to the network with the amount of data 𝑢𝑇𝑠0 ,
where 𝑇𝑠0 is long enough to ensure that at least one copy of
the entire file blocks are distributed into the network.

In the distribution process of the whole file (i.e., within
the period of the torrent lifetime), each of the 𝑁 leechers
eventually obtains a complete copy of the file. Therefore, an
amount 𝑁𝐴 of data has been uploaded by all peers. Thus, we
have 𝑁𝐴 = 𝑢𝑁𝑡𝑢 + 𝑢𝑁𝑇𝑠 + 𝑢𝑇𝑠0 and 𝑡𝑢 is given by

𝑡𝑢 =
𝑁𝐴 − 𝑢𝑁𝑇𝑠 − 𝑢𝑇𝑠0

𝑁𝑢
=

𝐴

𝑢
− 𝑇𝑠 −

𝑇𝑠0

𝑁

When the 𝐹 freeriders with the highest download rates
join the system, the seeds pass on all of their contributions to
the freeriders (following the OSS policy) before they, or the
freeriders, leave the network. Because the freeriders do not
upload blocks at all, all data are distributed through only the
unselfish leechers and the seeds; that is, 𝑁𝐴 = 𝑁 − 𝐹 𝑢𝑡𝑢

′ +
(𝑁 − 𝐹)𝑢𝑇𝑠 + 𝑢𝑇𝑠0.

In the second case, 𝑡𝑢
′ is given by

𝑡𝑢
′ =

𝑁𝐴 − 𝑁 − 𝐹 𝑢𝑇𝑠 − 𝑢𝑇𝑠0

 𝑁 − 𝐹 𝑢

 =
𝑁

𝑁 − 𝐹
∙
𝐴

𝑢
− 𝑇𝑠 −

𝑇𝑠0

𝑁 − 𝐹

To show the performance degradation caused by the
freeriders, the increase rate (𝐼𝑅𝐷) of mean download com-
pletion time of unselfish leechers is

𝐼𝑅𝐷 =
𝑡𝑢
′ −𝑡𝑢
𝑡𝑢

=
𝐹

𝑁 − 𝐹
∙

𝐴
𝑢

−
𝑇𝑠0

𝑁
𝐴
𝑢

−
𝑇𝑠0

𝑁
− 𝑇𝑠

>
𝐹

𝑁 − 𝐹

In [4], it is discovered that nearly 70% of Gnutella users
share no files. If we assume 𝐹 to be 70%, 𝐼𝑅𝐷 will be more
than 230%, which implies that unselfish leechers will have to
spend 230% more time on downloading because of the exis-
tence of freeriders. At an early stage, freeriders dominate the
resources of initial seeds, and unselfish leechers seldom ex-
change blocks with each other, because new blocks are
rarely delivered to them. This blank transfer period causes a
significant increase to the download completion time of un-
selfish leechers. Note that when 𝑇𝑠0 = 𝑁𝐴/𝑢 , 𝑃 = 0. This
implies that when the initial seed stays in the network for a
sufficiently long period of time, the mean download comple-
tion time of unselfish leechers will not be increased.

If an alternative strategy, TSS (see algorithm 2), is ap-
plied, the freeriders will not be the only consumers of the

initial seed. The seed tries to equalise its contributions to
every leecher in the system. The unselfish leechers have
equal chance to obtain new blocks from the initial seeds and
the blank transfer period no longer exists. The mean
download completion time of the unselfish leechers is thus
reduced. This result will be further demonstrated in the simu-
lation experiments.

In the final scenario, the 𝐸 exploiters keep exchanging
blocks with the leechers while they receive data from the
seeds. However, the exploiters will leave the network as
soon as they finish downloading; that is, they do not stay as
seeds for a period of time 𝑇𝑠 . Therefore, 𝑁𝐴 = 𝑁 −
𝐸 𝑢𝑡𝑢

′′ + 𝐸𝑢𝑡𝐸 + 𝑁 − 𝐸 𝑢𝑇𝑠 + 𝑢𝑇𝑠0 and 𝑡𝑢
′′ is given by

𝑡𝑢
′′ =

𝑁𝐴 − 𝐸𝑢𝑡𝐸 − 𝑁 − 𝐸 𝑢𝑇𝑠 − 𝑢𝑇𝑠0

 𝑁 − 𝐸 𝑢

=
𝑁

𝑁 − 𝐸
∙
𝐴

𝑢
−

𝐸

𝑁 − 𝐸
∙ 𝑡𝐿 − 𝑇𝑠 −

𝑇𝑠0

𝑁 − 𝐸

where 𝑡𝐸 is the mean download time of the 𝐸 exploiters.
To show the performance degradation, 𝐼𝑅𝐷′ is calcu-

lated

𝐼𝑅𝐷′ =
𝑡𝑢
′′ −𝑡𝑢
𝑡𝑢

=
𝐸

𝑁 − 𝐸
∙

𝐴
𝑢

−
𝑇𝑠0

𝑁
− 𝑡𝐸

𝐴
𝑢

−
𝑇𝑠0

𝑁
− 𝑇𝑠

=
𝐸

𝑁 − 𝐸
∙ (1 −

𝑡𝐸 − 𝑇𝑠
𝐴
𝑢

−
𝑇𝑠0

𝑁
− 𝑇𝑠

)

 Note that 𝑡𝐸 < 𝑡𝑢 because exploiters tend to be
served by seeds with a higher priority, thus we have

𝐼𝑅𝐷′ >
𝐸

𝑁 − 𝐸
∙

𝑇𝑠
𝐴
𝑢

−
𝑇𝑠0

𝑁
− 𝑇𝑠

The negative impact that the exploiters bring to the sys-
tem is less than that of the freeriders. When 𝑡𝐸 increases,
𝐼𝑅𝐷′ drops. The reason for this is that if the exploiters have
to stay as leechers in the network for a longer period of time,
they serve more blocks to the unselfish leechers and the
download rates of the unselfish leechers therefore increase.
OSS does not try to force exploiters to stay as leechers for a
longer period of time; on the contrary, it helps the exploiters
finish downloading in a faster manner if exploiters have
higher download rates.

IV. SIMULATION METHODOLOGY

In this section we conduct simulations to 1) verify our
mathematical model which is presented in Section III; 2)
analyse seeding strategies in both homogeneous and hetero-
geneous network environments; 3) further explore the per-
formance impact of seeding strategies using more compre-
hensive metrics.

A. Simulator Details

A discrete-event-based simulator written in Java is im-
plemented to simulate peer activities, such as joining, leaving

and block exchanging, as well as most of the BitTorrent
mechanisms (the local-rare-first algorithm, the choking algo-
rithm, OSS, TSS, etc). In the simulator, we treat every Bit-
Torrent or network related operation as an event. Every
event is associated with an event timestamp. The event time-
stamp does not fit the real time and it is a relative time indi-
cator for events. In the simulation, we preset some particular
launching events and event chains will be formed because
one event may lead to another. For example, when a peer
becomes able to serve others, the first choking round occurs
and a preset choking event for the peer is generated. When
the event finishes, it will generate or schedule the next chok-
ing round which will occur 10 seconds later. Note that the 10
seconds is the timestamp inside the simulation. All events,
including both the preset and the newly generated ones, are
pushed into a priority queue, sorted by event time. The
events in the event queue are polled one by one and exe-
cuted.

Each peer in the simulator is associated with a downlink
and an uplink bandwidth, which resemble asymmetric net-
work access as widely observed today. Based on these
bandwidth settings, the simulator calculates the block trans-
fer delay in the following way. When peer A is going to send
a block to peer B, the simulator retrieves A’s upload band-
width and B’s download bandwidth. The bandwidth with the
least value is selected and the time delay is calculated
through dividing the block size by the selected bandwidth
value. The simulator then schedules a block-received event
with the time delay for peer B. When the event is executed,
peer B receives the block and its file block set is updated.

Since the time delay computation for each block trans-
mission is expensive, we make a number of simplifications
that have negligible impact on the performance aspects we
are considering. For example, we ignore the interaction of
BitTorrent control packets, which are normally very small
compared with data block size. Following Akella et al. [15],
network bottlenecks are assumed to mainly occur in the
edges of networks.

We simulate BitTorrent mechanisms, such as its choking
algorithm, local-rare-first algorithm, OSS, TSS, as compre-
hensively as possible. However, BitTorrent performance can
be influenced by many configuration parameters at client
side or the network condition of peers. Since our study is to
find the performance impact of seeding strategies, we do not
try to find a set of optimal parameters for BitTorrent per-
formance but use those parameters proposed in related re-
search [2, 8].

B. Metrics

In term of fairness, we focus on the benefits that the un-

selfish leechers can obtain in the BitTorrent distribution
process. Hence the metrics we select for the simulations are
all for unselfish leechers.

Mean download completion time of unselfish leechers:
In the mathematical model, we use the mean download com-
pletion time of unselfish leechers as the metric to compare
seeding strategies where freeriders or exploiters exist. Since
the purpose of BitTorrent is to distribute a file among a
number of peers, the mean download completion time indi-
cates the efficiency of the distribution. Using this metric we
can investigate the overall system performance. In the simu-
lation experiments we continue to validate our model and
extend the BitTorrent overlay environment from a homoge-
nous to a heterogeneous setting. The download completion
time of every unselfish leecher is summed and a mean value
calculated.

Download rate and bandwidth utilisation: In the ex-
periments with homogeneous settings, we use download rate
and bandwidth utilisation of unselfish leechers as metrics to
indicate performance differences between OSS-led and TSS-
led BitTorrent overlays where selfish leechers exist.

Cumulative distribution of unselfish leechers’
download completion times: For the experiments with het-
erogeneous settings, we plot all cumulative distributions of
the download times of all unselfish leechers. This metric will
help us to understand how individual leechers perform.

C. Setup of Experiments

Since our study focuses on the seeding status of the dis-
tribution, i.e. the finishing period, we assume a steady-state
network where all leechers are already present. Bharambe et
al. [2] also use a set of peer bandwidths, which was derived
from the Gnutella study presented in [2]. We borrow the
bandwidth values from [2] and assign them to peers in our
simulation experiments.

In term of peers’ bandwidths, our experiments have two
settings: homogenous and heterogeneous. In the homoge-
nous setting, all leechers have the same network bandwidths
that we choose from the bandwidth values shared by [1, 2].
In the heterogeneous setting, the link bandwidths of leechers
follow the distribution which is presented in [2].

The experimental setup is summarised as follows:

 File size: A = 200MB; piece size: 256KB; block size:
16KB

 Number of initial seeds: 1

 All unselfish seeds stay in the overlay for 1000 sec-
onds

 Peers’ bandwidth:
o Initial seed uplink: 50KB/s
o Leechers’ bandwidth. Homogeneous: downlink

= 150KB/s, uplink = 38KB/s; Heterogeneous:
see Table I

o for freeriders and exploiters, the downlink re-
mains 150KB/s and the uplink remains 38KB/s

 Number of leechers: 𝑁 = 1000 and all leechers join
the network simultaneously at the beginning of the
distribution

 Unchoking slots for each peer: s = 5

TABLE I. BANDWIDTH DISTRIBUTION OF LEECHERS (DERIVED FROM

ACTUAL DISTRIBUTION OF THE GNUTELLA NETWORK [1, 2])

Downlink

(KB/s)

Uplink

(KB/s)
Fraction of leechers

78 12 0.3

150 38 0.6

300 100 0.1

D. Roadmap of Experiments

We begin in Section V by applying OSS and TSS, re-
spectively, to BitTorrent and examining their mean
download times of unselfish leechers in a homogeneous en-
vironment (all leechers have the same uplink and downlink
bandwidths) while freeriders or exploiters exist. For each of
the seeding strategies, there are three experiments performed
with this setting. In the first all leechers are unselfish. In the
second and last we vary the number of freeriders / exploiters
from 100 to 700 and record the mean download times.
Through the three sets of mean download times we calculate
the Increase Rates of the mean download times to study the
impact of OSS and TSS on unselfish leechers while freerid-
ers or exploiters exist. We finally use our mathematical
model to predict the increase rates and compare them with
OSS and TSS to verify the accuracy of our model.

In Section VI, we continue the experiments with hetero-
geneous settings. In addition to the mean download time of
unselfish leechers, we use the cumulative distribution of
download times for the three classes of unselfish leechers
whose network bandwidths are different. This metric helps
us investigate the details of individual completion time. We
use the set of 100, 300, and 700 for the numbers of freeriders
or exploiters, as the trend of the change of the download time
is the important characteristics that we are studying and we
believe this set is enough to highlight this trend.

V. RESULTS: THE HOMOGENOUS SETTING

In this section, we present the experimental results in a
homogenous setting. For each of the experiments, the figures
are plotted from the mean values of the results which are
provided from ten simulation runs.

A. Impact of Freeriders

Fig. 1 shows the mean download times of OSS and TSS
while freeriders exist. When there is no freerider in the net-
work, the mean download time when OSS is applied is
1938.4 seconds, while applying TSS leads to a download
time of 2114.6 seconds. The download process therefore
costs 8.3% more time to finish if TSS is employed; OSS
clearly outperforms TSS when all leechers are unselfish. The
advantage of OSS is kept, although debasing, along with the
increment of the number of freeriders. When the number of

freeriders reaches 300, TSS starts to out-perform OSS. Its
mean download time is 2812.6 seconds representing a 7.8%
improvement over OSS. When the number of freeriders is
700, which means 70% of the leechers are freeriders, the
mean download time of TSS is 40.9% less than OSS and the
downloading performance of OSS becomes very poor (its
mean downloading time is 7275.9 seconds). Clearly, TSS
performs better in resisting freeriders than OSS, but OSS
out-performs TSS when the number of freeriders is below a
certain value.

We plot the mean download rates of OSS and TSS in Fig.
2(a). We can see that the download rate of OSS is higher
than that of TSS before the number of freeriders reaches 300,
but drops quickly as the number of freeriders increases.
When 70% of the leechers are freeriders, the mean download
rate of OSS drops to 28.1KB/s where the mean download
bandwidth utilisation is only 18.7%. On the other hand, the
mean download rate of TSS drops smoothly and slowly.
Even in the worst case, the mean download rate of TSS is
47.6KB/s, although when there are no freeriders in the over-
lay, TSS performs 17.3% worse than OSS.

From Fig. 1 and Fig. 2(a), it can be concluded that before
the number of freeriders reaches a certain value, OSS leads
to a higher distribution performance than TSS. This is be-
cause OSS encourages leechers, who have higher download
rates, to be seeds more quickly. Although there may be a
number of freeriders in the overlay, a portion of unselfish
leechers still have the chance to be served by seeds, and con-
tinue to serve afterwards and boost the whole distribution
process. We know that freeriders will not serve others after
they finish downloading and even while they are being
served by seeds, they are not sharing file blocks with others.
Thus, when the number of freeriders grows, the possibility
for more freeriders dominating the resources of seeds will
also increase, and the downloading performance of unselfish
leechers are negatively and significantly impacted.

Instead of letting a particular set of leechers dominate the
seed resources, TSS forces seeds to treat every leecher
equally (despite their download rates) and serve them one by
one for a certain period of time. When the number of freerid-
ers is below a certain value, the TSS-led distribution process
has lower performance than OSS-led because it does not try
to boost the whole process by making more seeds quickly
(unlike OSS). While the number of freeriders is growing, the

0 100 200 300 400 500 600 700
0

1000

2000

3000

4000

5000

6000

7000

T
h

e
m

ea
n

 d
o

w
n

lo
ad

 t
im

e
(s

ec
o

n
d

)

Number of Freeriders / Exploiters

 Freerider-OSS

 Freerider-TSS

 Exploiter-OSS

 Exploiter-TSS

-100 0 100 200 300 400 500 600 700

30

45

60

75

90

105

Number of Freeriders / Exploiters

(a) Freeriders

 OSS

 TSS

-100 0 100 200 300 400 500 600 700

30

45

60

75

90

105

(b) Exploiters

 OSS

 TSS

T
h

e
m

ea
n

 d
o

w
n

lo
ad

 r
at

e
(K

B
/s

)

100 200 300 400 500 600 700

0.0

0.5

1.0

1.5

2.0

2.5

100 200 300 400 500 600 700

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 Number of Freeriders / Exploiters

 (b) Exploiters

 OSS

 Our model

 TSS

In
cr

ea
se

 r
at

e
o

f
th

e
m

ea
n

 d
o

w
n

lo
ad

 t
im

e

 (a) Freeriders

 OSS

 Our model

 TSS

Figure 1. the mean download times of

unselfish leechers in OSS and TSS when

freeriders / exploiters exit.

Figure 2. the mean download rate of unselfish

leechers in OSS and TSS when (a) freeriders /

(b) exploiters exist.

Figure 3. the increase rates of the mean

download time of unselfish leechers in OSS,

TSS and our model where (a) freeriders / (b)
exploiters exist.

performance is negatively impacted but does not drop
sharply like an OSS-led distribution, because freeriders will
never dominate the seed resources and unselfish leechers still
can be served by seeds even if the number of freeriders is
large.

We compare the IRDs of OSS-led BitTorrent and our
model in Fig. 3(a). The reason for calculating the IRD is to
see how much the mean download time grows if the number
of freeriders changes from zero to a certain value. Through
the growth we can conclude which seeding strategy (OSS or
TSS) performs better in resisting the freeriders. In addition,
by calculating the IRD from the experimental results, we can
justify how practical our mathematical model is. Note that
our mathematical model is only for an OSS-led BitTorrent
distribution process. We can see from Fig. 3(a) that the
mathematical model matches the experimental results, the
trends are approximately the same and our experience is that
it is not uncommon for a mathematical model to underesti-
mate values as it is, after all, an approximation of what is
actually performed in practice. We can confirm that in real-
world experiments the OSS-led BitTorrent performs worse
than our model predicts, although the model still provides a
reliable indication of IRDs, and that the mean download time
grows at a slightly faster rate.

If we focus on TSS-led BitTorrent, we can see that the
IRDs from this are very low; from the best case (0.08) to the
worst case (1.04). When comparing IRDs from a TSS-led
implementation with the OSS-led implementation, we find
that the TSS-led version is on average 41.66% better than the
OSS-led version, and the difference is consistent ranging
from -62.01% to -10.75% (the negative sign indicates that
the TSS-led version is lower than the OSS-led version). This
shows that with TSS, the mean download time increases in a
slow and steady manner, while more freeriders emerge in the
overlay.

B. Impact of Exploiters

Fig. 1 also shows the mean download times of the OSS-
led and the TSS-led version when there are exploiters in the
overlay. The OSS-led BitTorrent performs better than the

TSS-led one before the number of exploiters reaches 400
after which the reverse is true. Exploiters in a TSS-led Bit-
Torrent overlay cannot dominate the seeds; however, it is
similar for unselfish leechers whether they receive file blocks
from seeds or exploiters. Hence, there are no large differ-
ences despite employing OSS or TSS when the number of
exploiters is below a certain value (400 in our experiments).

Fig. 2(b) plots the mean download rate of the unselfish
leechers. When there are no exploiters in the overlay, the
OSS-led BitTorrent distribution shows a high download rate
of 110.73KB/s and the download bandwidth utilisation is
0.74. Although it is predictable that TSS-led BitTorrent per-
forms worse than the OSS-led version, the mean download
rate remains high at 96.12KB/s. When the number of ex-
ploiters is 100, the download rate of the OSS-led BitTorrent
decreases and is close to that of TSS. OSS keeps performing
better than TSS until the number of exploiters reaches 400.
When the number of exploiters equals 500, OSS is worse but
close to TSS; however, the performance of OSS drops sig-
nificantly afterwards while TSS’s degradation is slow. When
the number of exploiters is 700, the download bandwidth
utilisation of OSS is 0.24, lower than that of TSS (0.33).

From Fig. 3(b), we can see that the increase rate of the
mean download time for OSS matches our model and the
average difference is 0.091. Before the number of exploiters
reaches 400, the increase rates of the mean download time of
OSS and TSS are close. This indicates that before the num-
ber of exploiters reaches a certain value, the negative impact
on both seeding strategies are similar. After this, OSS suffers
more acutely than TSS. In other words, TSS performs better
than OSS in resisting exploiters.

VI. RESULTS: THE HETEROGENEOUS SETTING

In this section, we study the impact of the seeding strate-
gies on the performance of BitTorrent when peer bandwidth
is heterogeneous. As described in Section IV.C, we catego-
rise all unselfish peers into three classes whose network
bandwidths are different. To emphasise the effects of
freeriders and exploiters, we choose to make their band-
widths consistent: 150KB/s (down) and 38KB/s (up).

1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000 6000 7000
0.0

0.2

0.4

0.6

0.8

1.0

2000 3000 4000 5000 6000 7000 8000
0.0

0.2

0.4

0.6

0.8

1.0

3000 4500 6000 7500 9000 10500 12000
0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e

F
ra

ct
io

n
 o

f
U

n
se

lf
is

h
 L

ee
ch

er
s

(a) Num of Freeriders = 0

 OSS

 TSS

(b) Num of Freeriders = 100

 OSS

 TSS

 Download Time (Seconds)

(c) Num of Freeriders = 300

 OSS

 TSS

(d) Num of Freeriders = 700

 OSS

 TSS

1500 3000 4500 6000 7500
0.0

0.2

0.4

0.6

0.8

1.0

1500 3000 4500 6000 7500
0.0

0.2

0.4

0.6

0.8

1.0

1500 3000 4500 6000 7500 9000
0.0

0.2

0.4

0.6

0.8

1.0

3000 4500 6000 7500 9000 1050012000
0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e

F
ra

ct
io

n
 o

f
U

n
se

lf
is

h
 L

ee
ch

er
s

(a) Num of Freeriders = 0

 OSS 78KB/s

 OSS 150KB/s

 OSS 300KB/s

 TSS 78KB/s

 TSS 150KB/s

 TSS 300KB/s

(b) Num of Freeriders = 100

 OSS 78KB/s

 OSS 150KB/s

 OSS 300KB/s

 TSS 78KB/s

 TSS 150KB/s

 TSS 300KB/s

 Download Time (Seconds)

(c) Num of Freeriders = 300

 OSS 78KB/s

 OSS 150KB/s

 OSS 300KB/s

 TSS 78KB/s

 TSS 150KB/s

 TSS 300KB/s

(d) Num of Freeriders = 700

 OSS 78KB/s

 OSS 150KB/s

 OSS 300KB/s

 TSS 78KB/s

 TSS 150KB/s

 TSS 300KB/s

Figure 4. The cumulative distribution of the download times for all

unselfish leechers when freeriders exist.

Figure 5. The cumulative distribution of the download times for each

class of unselfish leechers when freeriders exit.

A. Impact of Freeriders

Fig. 4(a) plots the cumulative distribution of the
download time when there are no freeriders in the overlay. It
is clear that TSS performs much worse than OSS in this case.
Using TSS, there are only 20% of the leechers able to finish
the download within 3000 seconds and 90% of them need
nearly 6000 seconds to complete. In the case of OSS, 52% of
the leechers complete within 3000 seconds and 93% of them
finish within 5000 seconds.

Recall that there are three classes of unselfish leechers in
the overlay. In order to investigate the difference of the im-
pact between OSS and TSS on each class, we plot the cumu-
lative distribution of the download times for every class (Fig.
5(a)). The download link bandwidths of the three classes of
unselfish leechers are 78KB/s, 150KB/s and 300KB/s re-
spectively. Thus, the optimal cases for the download times of
the unselfish leechers are 2625.6, 1365.3, 682.7 seconds. We
can see from Fig. 4(a) that none of the leechers reach their
optimal download time, despite the presence of OSS or TSS.
For every class of unselfish leecher, OSS performs better
than TSS. The 300KB/s class of leechers in TSS have similar
download times to the 150KB/s class in OSS. The 78KB/s
class of leechers, who have the lowest download bandwidths,
spend the most time completing the download, particularly
when TSS is employed.

When the number of freeriders is increased to 100, the
two lines in Fig. 4(b), which indicate the download times
under the two seeding strategies, become closer and the
segments of the lines where the download time is more than
6500 overlap. In Fig. 5(b), we can see that the class of TSS
300KB/s has surpassed the class of OSS 150KB/s, while
they perform similarly if the number of freeriders is 0. At the
same time, the class of TSS 78KB/s and the class of OSS
150KB/s have very close download times.

This indicates that once the freeriders join the overlay,
the performance of the OSS-led BitTorrent degrades towards
the TSS-led version. The TSS-led BitTorrent also suffers
performance degradation; however, the degree of this is less
than that of the OSS. When the number of freeriders reaches
300, the lines in Fig. 4(c) are very close to overlapping, be-

fore the point where the download time equals 5000. This
means that there are similar numbers of unselfish leechers
having finished their download within 5000 seconds. After
5000 seconds, more unselfish leechers with TSS finish be-
fore 7000 seconds than those with OSS. Fig. 9(f) shows that
the low bandwidth (78KB/s) leechers with TSS complete
sooner than those with OSS

For middle and high bandwidth leechers with TSS and
OSS, they perform the download similarly. This case is seen
to be similar to the homogeneous setting. Where the number
of freeriders is 300 and above, TSS starts to perform better
than OSS. For the results of the experiments in which the
number of freeriders is 700, we plot them on Fig. 4(d) and
Fig. 5(d). From both figures, it is clear that when the number
of freeriders is more than 300, TSS performs better than OSS.
In Fig. 5(d), the class of OSS 150KB/s performs even worse
than the class of TSS 78KB/s. Comparing the class of TSS
150KB/s with OSS 300KB/s, we can see that, 40% of TSS
150KB/s spent less time than OSS 300KB/s leechers.

In addition to the conclusions that we draw from the
above study, we also find two interesting effects of freeriders:

 Freeriders impact simultaneously on all leechers
even if they have different bandwidths;

 OSS-led and TSS-led BitTorrent overlays both suf-
fer from freeriders. However, The TSS-led version
suffers less than the OSS-led one. This is clearer
when more freeriders join the overlay.

B. Impact of Exploiters

In this section, we study the resistance of OSS and TSS
to the exploiters. When the number of exploiters equals zero,
the results of the download times are the same as those
where there are no freeriders in the overlay (Fig. 4(a) and Fig.
5(b)). Thus we do not repeat the results or discussion here.
Instead, we continue the study from where the number of
exploiters is 100.

When the number of exploiters is increased to 300 (Fig.
6(e)), 8% of the class TSS 300KB/s leechers finish
downloading before all high-level leechers in the OSS-led
BitTorrent; however, the remainder of the OSS 300KB/s
leechers perform better than TSS 300KB/s. The download

2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

3000 4000 5000 6000 7000 8000
0.0

0.2

0.4

0.6

0.8

1.0

2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

2000 3000 4000 5000 6000 7000 8000
0.0

0.2

0.4

0.6

0.8

1.0

3000 4000 5000 6000 7000 8000 9000
0.0

0.2

0.4

0.6

0.8

1.0

 num of exploiters = 100
C

u
m

u
la

ti
v

e
 F

ra
c
ti

o
n

 o
f

U
n

se
lf

is
h

 L
e
e
c
h

e
rs

(a) Num of Exploiters = 100

 OSS

 TSS

 num of exploiters = 700

(c) Num of Exploiters = 700

 OSS

 TSS

 num of exploiters = 300

(b) Num of Exploiters = 300

 OSS

 TSS

Download Time (Seconds)

(d) Num of Exploiters = 100

 OSS 78KB/s

 OSS 150KB/s

 OSS 300KB/s

 TSS 78KB/s

 TSS 150KB/s

 TSS 300KB/s

(e) Num of Exploiters = 300

 OSS 78KB/s

 OSS 150KB/s

 OSS 300KB/s

 TSS 78KB/s

 TSS 150KB/s

 TSS 300KB/s

(f) Num of Exploiters = 700

 OSS 78KB/s

 OSS 150KB/s

 OSS 300KB/s

 TSS 78KB/s

 TSS 150KB/s

 TSS 300KB/s

Figure 6. The cumulative distribution of the download times for each class of unselfish leechers when exploiters exit.

times of the middle level leechers are very close in both
overlays, although the ones in the OSS-led overlay are still
slightly better than the TSS-led version. The low-level leech-
ers in the TSS-led overlay complete sooner than the ones in
the OSS-led BitTorrent. With the emergence of more ex-
ploiters, the middle-level leechers in the OSS-led overlay
significantly impact on performance (compared with Fig.
4(a)). This is because when exploiters finish downloading,
they leave the network immediately.

Although high-level unselfish leechers will serve the
overlay for an amount of time in an OSS-led overlay, their
service targets are always other high-level leechers who have
not yet finished. The services to the middle-level leechers are
not therefore sufficient. In the TSS-led overlay, middle-level
unselfish leechers always obtain their services from existing
seeds, even if exploiters exist. Thus the performance degra-
dation in the TSS-led overlay is not as severe. Once the
number of exploiters reaches more than 300, TSS starts to
transcend OSS. First, the middle- level unselfish leechers in
the TSS-led overlay obtain better overall download speeds
than the same class in the OSS-led version (shown in Fig.
6(c)) and 9% of them even perform better than those in the
OSS-led overlay when the number of exploiters is 700
(shown in Fig. 6(f)).

The performance differences of low-level leechers be-
tween the OSS-led and TSS-led versions remain similar to
the case where the number of exploiters is 300; however,
their overall download times are increased. When the num-
ber of exploiters is 700, the download time window for 63%
of the unselfish leechers in the TSS-led overlay is between
3000 and 5000 seconds, while this window is between 4000
and 6000 seconds for the OSS-led overlay.

VII. CONCLUSIONS AND DISCUSSION

In this paper we establish a mathematical model to ana-
lyse how the seeding strategies in BitTorrent affect system
performance in the presence of selfish peers. We choose two
popular seeding strategies, the Original Seeding Strategy
(OSS) and the Time-based Seeding Strategy (TSS), for this
study. We categorise selfish peers into two classes: freeriders
and exploiters. A series of simulations are then conducted in
both homogeneous and heterogeneous network settings.

First, we prove the practical uses of our mathematical
model, which can be used to theoretically study the effects of
the seeding strategies on a BitTorrent network. We then dis-
cover that when the number of selfish leechers is below a
certain value, OSS performs better than TSS. Beyond this
value, TSS outperforms OSS by equalising the contributions
of seeds to every leecher. It is observed that this approach
prevents freeriders from occupying the resources of seeds
and successfully makes exploiters serve more blocks to other
leechers.

We also discover that both freeriders and exploiters harm
the system, despite the seeding strategy that is employed.
TSS has better resistance (which means smaller performance
degradation) to selfish leechers compared with OSS. Our
experimental results are consistent with those shown in [8]:
that the download rates that leechers can obtain are directly
proportional to leechers’ bandwidths. Furthermore, we find

that the selfish leechers can impact negatively on leechers of
every level of bandwidth and neither of the seeding strategies
can completely eliminate this impact. TSS can reduce the
impact more effectively than OSS; this can be more clearly
observed when the number of selfish leechers reaches a cer-
tain threshold.

In a BitTorrent network we believe that OSS should be
employed to boost system performance (higher download
performance) if the number of selfish leechers is relatively
small; the exact threshold depends on the BitTorrent envi-
ronment. Beyond this threshold, TSS should be deployed to
equalise the contributions of the seeds into all leechers to
prevent selfish leechers from dominating the seeding re-
sources. Current popular BitTorrent clients employ either
OSS or TSS, and none investigate the combination of these
two seeding strategies. Therefore our future research is fo-
cused on how to combine these two seeding strategies so that
the seeds can deliver enhanced service to unselfish leechers
despite the existence of selfish leechers. This will involve
building a mechanism to detect the scale of selfish leechers
in the overlay. Depending on the scale, we will direct the
seeds to implement OSS or TSS dynamically.

REFERENCE

[1] S. Saroiu, P. K. Gummadi and S. D. Gribble, "A Measurement Study
of Peer-to-Peer File Sharing Systems", MMCN, 2002

[2] A. R. Bharambe, C. Herley and V. N. Padmanabhan, "Analyzing and

Improving a BitTorrent Network's Performance Mechanisms", IEEE
INFOCOM, 2006

[3] B. Cohen, "Incentives Build Robustness in BitTorrent", First Work-

shop on Economics of Peer-to-Peer Systems, 2003

[4] E. Adar and B. A. Huberman, "Free Riding on Gnutella", First Mon-

day, pp.

[5] S. Jun and M. Ahamad, "Incentives in BitTorrent Induce Free Riding",
ACM SIGCOMM, 2005

[6] N. Andrade, M. Mowbray, A. Lima, G. Wagner and M. Ripeanu, "In-
fluences on Cooperation in BitTorrent Communities", The Third

Workshop on Economics of Peer-to-Peer Syste, 2005

[7] D. Qiu and R. Srikant, "Modeling and Performance Analysis of BitTor-
rent-Like Peer-to-Peer Networks", ACM SIGCOMM, 2004

[8] A. Legout, N. Liogkas, E. Kohler and L. Zhang, "Clustering and Shar-

ing Incentives in BitTorrent Systems", ACM SIGMETRICS, 2007
[9] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. A. Hamra and

L. Garces-Erice, "Dissecting BitTorrent: Five Months in a Torrent's

Lifetime", PAM'04, 2004
[10] J. A. Pouwelse, P. Garbacki, D. H. J. Epema and H. J. Sips, "The Bit-

Torrent P2P File-Sharing System: Measurements and Analysis",

IPTPS, 2005

[11] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding and X. Zhang, "Measure-

ments, Analysis, and Modeling of BitTorrent-like Systems", ACM

SIGCOMM Internet Measurement Conference (IMC'05), 2005
[12] B. Fan, D. M. Chiu and J. C. Lui., "The Delicate Tradeoffs in BitTor-

rent-like File Sharing Protocol Design", ICNP, 2006

[13] P. A. Felber and E. W. Biersack., "Self-scaling Networks for Content
Distribution", International Workshop on Self-* Properties in Complex

Information Systems, 2004

[14] L. Massoulie and M. Vojnovic, "Coupon Replication Systems", Sig-
comm, 2005

[15] A. Akella, S. Seshan and A. Shaikh, "An Empirical Evaluation of

Wide-Area Internet Bottlenecks", IMC, 2003

