32 research outputs found

    Native Point Defect Measurement and Manipulation in ZnO Nanostructures

    Get PDF
    This review presents recent research advances in measuring native point defects in ZnO nanostructures, establishing how these defects affect nanoscale electronic properties, and developing new techniques to manipulate these defects to control nano- and micro- wire electronic properties. From spatially-resolved cathodoluminescence spectroscopy, we now know that electrically-active native point defects are present inside, as well as at the surfaces of, ZnO and other semiconductor nanostructures. These defects within nanowires and at their metal interfaces can dominate electrical contact properties, yet they are sensitive to manipulation by chemical interactions, energy beams, as well as applied electrical fields. Non-uniform defect distributions are common among semiconductors, and their effects are magnified in semiconductor nanostructures so that their electronic effects are significant. The ability to measure native point defects directly on a nanoscale and manipulate their spatial distributions by multiple techniques presents exciting possibilities for future ZnO nanoscale electronics

    BHLHE40 regulates the T-cell effector function required for tumor microenvironment remodeling and immune checkpoint therapy efficacy

    Get PDF
    Immune checkpoint therapy (ICT) using antibody blockade of programmed cell death protein 1 (PD-1) or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) can provoke T cell-dependent antitumor activity that generates durable clinical responses in some patients. The epigenetic and transcriptional features that T cells require for efficacious ICT remain to be fully elucidated. Herein, we report that anti-PD-1 and anti-CTLA-4 ICT induce upregulation of the transcription factor BHLHE40 in tumor antigen-specific CD8+ and CD4+ T cells and that T cells require BHLHE40 for effective ICT in mice bearing immune-edited tumors. Single-cell RNA sequencing of intratumoral immune cells in BHLHE40-deficient mice revealed differential ICT-induced immune cell remodeling. The BHLHE40-dependent gene expression changes indicated dysregulated metabolism, NF-κB signaling, and IFNγ response within certain subpopulations of CD4+ and CD8+ T cells. Intratumoral CD4+ and CD8+ T cells from BHLHE40-deficient mice exhibited higher expression of the inhibitory receptor gene Tigit and displayed alterations in expression of genes encoding chemokines/chemokine receptors and granzyme family members. Mice lacking BHLHE40 had reduced ICT-driven IFNγ production by CD4+ and CD8+ T cells and defects in ICT-induced remodeling of macrophages from a CX3CR1+CD206+ subpopulation to an iNOS+ subpopulation that is typically observed during effective ICT. Although both anti-PD-1 and anti-CTLA-4 ICT in BHLHE40-deficient mice led to the same outcome-tumor outgrowth-several BHLHE40-dependent alterations were specific to the ICT that was used. Our results reveal a crucial role for BHLHE40 in effective ICT and suggest that BHLHE40 may be a predictive or prognostic biomarker for ICT efficacy and a potential therapeutic target

    The 4D nucleome project

    Get PDF

    The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: an overview of Network organization, procedures and interventions

    Get PDF
    Asthma is a heterogeneous disease, with multiple underlying inflammatory pathways and structural airway abnormalities that impact disease persistence and severity. Recent progress has been made in developing targeted asthma therapeutics, especially for subjects with eosinophilic asthma. However, there is an unmet need for new approaches to treat patients with severe and exacerbation prone asthma, who contribute disproportionately to disease burden. Extensive deep phenotyping has revealed the heterogeneous nature of severe asthma and identified distinct disease subtypes. A current challenge in the field is to translate new and emerging knowledge about different pathobiologic mechanisms in asthma into patient-specific therapies, with the ultimate goal of modifying the natural history of disease. Here we describe the Precision Interventions for Severe and/or Exacerbation Prone Asthma (PrecISE) Network, a groundbreaking collaborative effort of asthma researchers and biostatisticians from around the U.S. The PrecISE Network was designed to conduct phase II/proof of concept clinical trials of precision interventions in the severe asthma population, and is supported by the National Heart Lung and Blood Institute of the National Institutes of Health. Using an innovative adaptive platform trial design, the Network will evaluate up to six interventions simultaneously in biomarker-defined subgroups of subjects. We review the development and organizational structure of the Network, and choice of interventions being studied. We hope that the PrecISE Network will enhance our understanding of asthma subtypes and accelerate the development of therapeutics for of severe asthma

    Magnetic field detection limits for ultraclean graphene Hall sensors

    No full text
    The development of high-performance magnetic field sensors is important for magnetic sensing and imaging. Here, the authors fabricate Hall sensors from graphene encapsulated in hBN and few-layer graphite, demonstrating high performance over a wide range of temperature and background magnetic field

    Scanning SQUID microscopy in a cryogen-free dilution refrigerator

    Get PDF
    This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award No. DE-SC0015947 (scanning SQUID imaging and implementation of millikelvin microscopes) and the Cornell Center of Materials Research with funding from the NSF MRSEC program under Award No. DMR-1719875 (SQUID and microscope design). Fabrication of the microstructures was supported by the Max Planck Society and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (Grant No. MO 3077/1-1) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 715730).We report a scanning superconducting quantum interference device (SQUID) microscope in a cryogen-free dilution refrigerator with a base temperature at the sample stage of at least 30 mK. The microscope is rigidly mounted to the mixing chamber plate to optimize thermal anchoring of the sample. The microscope housing fits into the bore of a superconducting vector magnet, and our design accommodates a large number of wires connecting the sample and sensor. Through a combination of vibration isolation in the cryostat and a rigid microscope housing, we achieve relative vibrations between the SQUID and the sample that allow us to image with micrometer resolution over a 150 µm range while the sample stage temperature remains at base temperature. To demonstrate the capabilities of our system, we show images acquired simultaneously of the static magnetic field, magnetic susceptibility, and magnetic fields produced by a current above a superconducting micrometer-scale device.Publisher PDFPeer reviewe

    Native Point Defect Measurement and Manipulation in ZnO Nanostructures

    No full text
    This review presents recent research advances in measuring native point defects in ZnO nanostructures, establishing how these defects affect nanoscale electronic properties, and developing new techniques to manipulate these defects to control nano- and micro- wire electronic properties. From spatially-resolved cathodoluminescence spectroscopy, we now know that electrically-active native point defects are present inside, as well as at the surfaces of, ZnO and other semiconductor nanostructures. These defects within nanowires and at their metal interfaces can dominate electrical contact properties, yet they are sensitive to manipulation by chemical interactions, energy beams, as well as applied electrical fields. Non-uniform defect distributions are common among semiconductors, and their effects are magnified in semiconductor nanostructures so that their electronic effects are significant. The ability to measure native point defects directly on a nanoscale and manipulate their spatial distributions by multiple techniques presents exciting possibilities for future ZnO nanoscale electronics

    Native Point Defect Measurement and Manipulation in ZnO Nanostructures

    No full text
    This review presents recent research advances in measuring native point defects in ZnO nanostructures, establishing how these defects affect nanoscale electronic properties, and developing new techniques to manipulate these defects to control nano- and micro- wire electronic properties. From spatially-resolved cathodoluminescence spectroscopy, we now know that electrically-active native point defects are present inside, as well as at the surfaces of, ZnO and other semiconductor nanostructures. These defects within nanowires and at their metal interfaces can dominate electrical contact properties, yet they are sensitive to manipulation by chemical interactions, energy beams, as well as applied electrical fields. Non-uniform defect distributions are common among semiconductors, and their effects are magnified in semiconductor nanostructures so that their electronic effects are significant. The ability to measure native point defects directly on a nanoscale and manipulate their spatial distributions by multiple techniques presents exciting possibilities for future ZnO nanoscale electronics
    corecore