3,816 research outputs found

    Coupling Human Mobility and Social Ties

    Get PDF
    Studies using massive, passively data collected from communication technologies have revealed many ubiquitous aspects of social networks, helping us understand and model social media, information diffusion, and organizational dynamics. More recently, these data have come tagged with geographic information, enabling studies of human mobility patterns and the science of cities. We combine these two pursuits and uncover reproducible mobility patterns amongst social contacts. First, we introduce measures of mobility similarity and predictability and measure them for populations of users in three large urban areas. We find individuals' visitations patterns are far more similar to and predictable by social contacts than strangers and that these measures are positively correlated with tie strength. Unsupervised clustering of hourly variations in mobility similarity identifies three categories of social ties and suggests geography is an important feature to contextualize social relationships. We find that the composition of a user's ego network in terms of the type of contacts they keep is correlated with mobility behavior. Finally, we extend a popular mobility model to include movement choices based on social contacts and compare it's ability to reproduce empirical measurements with two additional models of mobility

    Disdrometer network observations of finescale spatial–temporal clustering in rain

    Get PDF
    The spatial clustering of drops is a defining characteristic of rain on all scales from centimeters to kilometers. It is the physical basis for much of the observed variability in rain. The authors report here on the temporal–spatial 1-min counts using a network of 21 optical disdrometers over a small area near Charleston, South Carolina. These observations reveal significant differences between spatial and temporal structures (i.e., clustering) for different sizes of drops, which suggest that temporal observations of clustering cannot be used to infer spatial clustering simply using by an advection velocity as has been done in past studies. It is also shown that both spatial and temporal clustering play a role in rain variability depending upon the drop size. The more convective rain is dominated by spatial clustering while the opposite holds for the more stratiform rain. Like previous time series measurements by a single disdrometer but in contradiction with widely accepted drop size distribution power-law relations, it is also shown that there is a linear relation between 1-min averages of the rainfall rate R over the network and the average total number of drops Nt. However, the network (area) R–Nt relation differs from those derived strictly from time series observations by individual disdrometers. These differences imply that the temporal and spatial size distributions and their variabilities are not equivalent

    An example of persistent microstructure in a long rain event

    Get PDF
    A 2D video disdrometer (2DVD) probe was used to gather detailed drop measurements over a 770-min rain event. Accumulated totals of the rainfall and of the number of drops for each square centimeter showed persistent, significant correlated structures across the approximately 11 cm Ă— 11 cm grid of the 2DVD. This is surprising because larger-scale studies suggest that the values in each square centimeter should be highly correlated with very little variation. Nevertheless, this correlation remains strikingly similar to what is observed at a coarser resolution, suggesting that it somehow scales with spatial resolution. However, because the correlation functions are not power laws, the origin of this scaling must be due to a factor other than fractal geometry. Analysis reveals that this occurs because of a filtering effect such that as the domain size (or resolution of a remote sensor) becomes finer, it is only the smaller wavelengths that contribute most to the variance so that the correlation function also scales. Consequently, correlated finescale structures can apparently occur even over 10 cm. This fine structure was also found for the kinetic energy and impact power of the rain, important for understanding the initiation of soil erosion. The patterns in the integrated parameters appeared to arise almost exclusively from patterns in the total number of drops with patterns in the drop sizes playing an insignificant role. Therefore, in future studies of rain it is recommended that the total number of drops be retained as a crucial variable

    Brown Dwarfs in the Pleiades Cluster. III. A deep IZ survey

    Full text link
    We present the results of a deep CCD-based IZ photometric survey of a ~1 sq. deg area in the central region of the Pleiades Galactic open cluster. The magnitude coverage of our survey (from I~17.5 down to 22) allows us to detect substellar candidates with masses between 0.075 and 0.03 Msol. Details of the photometric reduction and selection criteria are given. Finder charts prepared from the I-band images are provided.Comment: 11 pages with 8 figures, 4 of them are finder charts given in gif format. Accepted for publication in A&AS. Also available at http://www.iac.es/publicaciones/preprints.htm

    On the variability of drop size distributions over areas

    Get PDF
    Past studies of the variability of drop size distributions (DSDs) have used moments of the distribution such as the mass-weighted mean drop size as proxies for the entire size distribution. In this study, however, the authors separate the total number of drops Nt from the DSD leaving the probability size distributions (PSDs); that is, DSD = Nt Ă— PSD. The variability of the PSDs are then considered using the frequencies of size [P(D)] values at each different drop diameter P(PD | D) over an ensemble of observations collected using a network of 21 optical disdrometers. The relative dispersions RD of P(PD | D) over all the drop diameters are used as a measure of PSD variability. An intrinsic PSD is defined as an average over one or more instruments excluding zero drop counts. It is found that variability associated with an intrinsic PSD fails to characterize its true variability over an area. It is also shown that this variability is not due to sampling limitations but rather originates for physical reasons. Furthermore, this variability increases with the expansion of the network size and with increasing drop diameter. A physical explanation is that the network acts to integrate the Fourier transform of the spatial correlation function from smaller toward larger wavelengths as the network size increases so that the contributions to the variance by all spatial wavelengths being sampled also increases. Consequently, RDand, hence, PSD variability will increase as the size of the area increases

    Ideologies of time: How elite corporate actors engage the future

    Get PDF
    Our paper deals with how elite corporate actors in a Western capitalist-democratic society conceive of and prepare for the future. Paying attention to how senior officers of ten important Danish companies make sense of the future will help us to identify how particular temporal narratives are ideologically marked. This ideological dimension offers a common sense frame that is structured around a perceived inevitability of capitalism, a market economy as the basic organizational structure of the social and economic order, and an assumption of confident access to the future. Managers envisage their organization?s future and make plans for organizational action in a space where ?business as usual? reigns, and there is little engagement with the future as fundamentally open; as a time-yet-to-come. In using a conceptual lens inspired by the work of Fredric Jameson, we first explore the details of this presentism and a particular colonization of the future, and then linger over small disruptions in the narratives of our interviewees which point to what escapes or jars their common sense frame, explore the implicit meanings they assign to their agency, and also find clues and traces of temporal actions and strategies in their narratives that point to a subtly different engagement with time

    Observations of Ultracool White Dwarfs

    Get PDF
    We present new spectroscopic and photometric measurements of the white dwarfs LHS 3250 and WD 0346+246. Along with F351-50, these white dwarfs are the coolest ones known, all with effective temperatures below 4000 K. Their membership in the Galactic halo population is discussed, and detailed comparisons of all three objects with new atmosphere models are presented. The new models consider the effects of mixed H/He atmospheres and indicate that WD 0346+246 and F351-50 have predominantly helium atmospheres with only traces of hydrogen. LHS 3250 may be a double degenerate whose average radiative temperature is between 2000 and 4000 K, but the new models fail to explain this object

    Family Criticism and Depressive Symptoms in Older Adult Primary Care Patients: Optimism and Pessimism as Moderators

    Get PDF
    Objective: Depression is a significant global public health burden, and older adults may be particularly vulnerable to its effects. Among other risk factors, interpersonal conflicts, such as perceived criticism from family members, can increase risk for depressive symptoms in this population. We examined family criticism as a predictor of depressive symptoms and the potential moderating effect of optimism and pessimism. Methods: One hundred five older adult, primary care patients completed self-report measures of family criticism, optimism and pessimism, and symptoms of depression. We hypothesized that optimism and pessimism would moderate the relationship between family criticism and depressive symptoms. Results: In support of our hypothesis, those with greater optimism and less pessimism reported fewer depressive symptoms associated with family criticism. Conclusion: Therapeutic enhancement of optimism and amelioration of pessimism may buffer against depression in patients experiencing familial criticism

    WD0837+185:the formation and evolution of an extreme mass ratio white dwarf-brown dwarf binary in Praesepe

    Full text link
    There is a striking and unexplained dearth of brown dwarf companions in close orbits (< 3AU) around stars more massive than the Sun, in stark contrast to the frequency of stellar and planetary companions. Although rare and relatively short-lived, these systems leave detectable evolutionary end points in the form of white dwarf - brown dwarf binaries and these remnants can offer unique insights into the births and deaths of their parent systems. We present the discovery of a close (orbital separation ~ 0.006 AU) substellar companion to a massive white dwarf member of the Praesepe star cluster. Using the cluster age and the mass of the white dwarf we constrain the mass of the white dwarf progenitor star to lie in the range 3.5 - 3.7 Msun (B9). The high mass of the white dwarf means the substellar companion must have been engulfed by the B star's envelope while it was on the late asymptotic giant branch (AGB). Hence, the initial separation of the system was ~2 AU, with common envelope evolution reducing the separation to its current value. The initial and final orbital separations allow us to constrain the combination of the common envelope efficiency (alpha) and binding energy parameters (lambda) for the AGB star to alpha lambda ~3. We examine the various formation scenarios and conclude that the substellar object was most likely to have been captured by the white dwarf progenitor early in the life of the cluster, rather than forming in situ.Comment: Accepted for publication in ApJ
    • …
    corecore