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ABSTRACT

A2Dvideo disdrometer (2DVD) probewas used to gather detailed dropmeasurements over a 770-min rain

event. Accumulated totals of the rainfall and of the number of drops for each square centimeter showed

persistent, significant correlated structures across the approximately 11 cm3 11 cm grid of the 2DVD. This is

surprising because larger-scale studies suggest that the values in each square centimeter should be highly

correlated with very little variation. Nevertheless, this correlation remains strikingly similar to what is ob-

served at a coarser resolution, suggesting that it somehow scales with spatial resolution. However, because the

correlation functions are not power laws, the origin of this scaling must be due to a factor other than fractal

geometry. Analysis reveals that this occurs because of a filtering effect such that as the domain size (or

resolution of a remote sensor) becomes finer, it is only the smaller wavelengths that contribute most to the

variance so that the correlation function also scales. Consequently, correlated finescale structures can ap-

parently occur even over 10 cm. This fine structure was also found for the kinetic energy and impact power of

the rain, important for understanding the initiation of soil erosion. The patterns in the integrated parameters

appeared to arise almost exclusively from patterns in the total number of drops with patterns in the drop sizes

playing an insignificant role. Therefore, in future studies of rain it is recommended that the total number of

drops be retained as a crucial variable.

1. Introduction

Rainfall is the result of an intermittent, stochastic

process occurring over a wide range of temporal and

spatial scales. Consequently, it must be described sta-

tistically using the usual parameters of, for example,

mean values, variances, and correlation functions. Per-

haps the most frequently used parameter is the mean

value averaged over time and/or space. However, all of

these parameters are intimately related. Consequently,

one should not really speak about the mean without

mentioning a correlation length in time and space

since it determines the accuracy and representative-

ness of thatmean. This latter omission can be deceptively

misleading.

A review of the literature often reveals an un-

derlying assumption that the rain is statistically ho-

mogeneous, that is, its statistical measures are identical

at all locations and times. This is often a necessary

assumption in order to say anything meaningful us-

ing a set of observations. However, it may often be an

incorrect assumption. That is, rain is frequently sta-

tistically heterogeneous so that its statistical prop-

erties depend on the times and locations of the

measurements. At times this can have significant

consequences because in those cases, for example,

there may be no convergence to a constant either

temporally or spatially no matter how extensive the

observations.
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If we just focus on spatial variability, surely over small

enough areas, such effects disappear in a uniform cov-

ering by the rain; after all, experience shows us that

streets and car windshields become uniformly wet in

only a brief time. Of course, this is misleading because

‘‘wetness’’ is an accumulative binary condition that,

once satisfied, persists, while accumulated rainfall, for

example, is an ongoing integral. Hence, it remains a

valid question to ask, does rainfall spatial variability

always disappear over some sufficiently small area or

long enough period of observations even in statistically

heterogeneous rain?

In this paper, we explore the answer by using the area

of the 2D video disdrometer (2DVD) as a virtual network

of 121 one-square-centimeter detectors. The 2DVD in-

strument is thoroughly described in Schönhuber et al.

(2008). For this work, the relevant basic properties are

that it creates two sheets of light having parallelogram

sampling areas that are nearly square and that are sepa-

rated by a small distance. When drops pass through, the

blockages of the beams are measured by two charge-

coupled device (CCD) cameras at orthogonal angles

having a nominal resolution of 0.19mm at sampling rates

of 55kHz. The dimensions, shapes, locations, and fall

speeds of the drops are calculated and stored. Thus, the

data can be subsequently categorized by time, location,

and sizes as required for analyses.

The instrument is enclosed in a box out in an open

field [see Fig. A3 in Jameson et al. (2015)] covered by

low vegetation. An analysis on an older version of this

instrument suggested that turbulence could affect some

of the trajectories of the smaller drop sizes (Ne�spor et al.

2000). The newer unit has since been redesigned in

such away that it minimizes these earlier effects. Even in

the old version, however, the turbulence only extended

10–20 cm above the detector opening according to

Ne�spor et al. (2000) for a 3–5m s21 ambient wind speed.

Fortunately, the drop response times of the sizes most

important to the rainfall rate (0.6mm, the smallest size

considered here, and larger diameters) would be much

too long to feel any turbulence from the box encasing

the measurement area. For drops of 0.6mm diameter,

Beard and Jameson (1983) show that the response time

is aminimumof 0.26 s, so that drops would havemoved a

minimum of 0.67m or 0.4m or more into the 2DVD

detector before they could have even responded to any

turbulence. Thus, the important drops would never have

even felt any turbulence so that the observed spatial

structures are likely unaffected.

In earlier work by Gires et al. (2015), the 2DVD was

used as a single instrument to explore the fractal nature

of rain. Our purpose here is entirely different. We use

the combination of all of the 121 one-square-centimeter

elements as a virtual spatial grid in order to map the 2D

contours of variables and to study the statistical spatial

structures of the rain using 2D correlation functions and

radial spatial distribution functions. Before proceeding,

however, we begin with two necessary definitions.

2. Preliminary considerations

Following Jameson and Larsen (2016a), let us

consider a random variable w as an element in a sta-

tistically homogeneous 2D fieldW. Let us also consider

two locations at r and r1Dr. One can then define a

correlation function between the w observed at these

two locations as

r(Dr, u)5
hw(r, u)w(r1Dr, u)i2m2

s2
, (1)

where s2 is the variance,m is themean value ofw overW

and the angle brackets denote an ensemble average over

all locations separated radially and azimuthally by Dr
and u, respectively. The angle brackets can also denote

temporal averages when one uses direct calculations

among instruments in a sparse network, as is done in

Jameson et al. (2015). However, when there is a suffi-

ciently dense grid of observations, the brackets are ap-

propriately considered to represent an ensemble

average. It is also worth noting that this quantity can be

converted to the 2D pair correlation function (Kostinski

and Jameson 2000; Shaw et al. 2002; Kostinski et al.

2006; Jameson et al. 2015) by multiplying by the spatial

pair correlation function coefficient [SPCFC; SPCFC 5
var(w)/m25 (RD)2], where RD is the relative dispersion

and var is the variance.

One approach for calculating the 2D spatial correla-

tion function is to use all the data simultaneously by first

calculating the 2D power spectrum of the spatial distri-

bution ofw. That is, one first calculates m and removes it

from all the elements in W. The Fourier transform of

these adjusted elements in this 2D matrix times its

complex conjugate is then the variance spectrum, that is,

the magnitude of the variance as a function of wave-

number (Blackman and Tukey 1975). If one then takes

the inverse 2D Fourier transform of this variance spec-

trum, one derives the 2D correlation function by the

Weiner–Khintchine theorem (Wiener 1930; Khintchine

1934). If w were drop counts, for example, after nor-

malization this correlation function is equivalent to

r(Dr, u), or to the so-called 2D pair correlation function,

if one multiplies by the SPCFC. On the other hand, if w

were the rainfall rate, then the result would simply be

the 2Dcorrelation function. As for any sample-by-sample

calculation of a correlation function, the data must be
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assumed or shown to be approximately statistically ho-

mogeneous. This is not always easy to demonstrate since

the meteorology can introduce variable trends, although

some methods for detecting this do exist (Anderson and

Kostinski 2010). However, because we will only be using

temporal averages of r(Dr, u), this is not an issue since

trends and correlations can always be destroyed by re-

shuffling of the data, yet such reshuffling will not affect

the average.

In addition, however, there is the so-called radial

correlation function r(Dr), which is just the azimuthal

integration of r(Dr, u), that is,

r(Dr)5

ð
u

r(Dr, u) du, (2)

where u is the azimuthal angle that, for this network,

lies between 0 and p/2 radians. In this work, r(Dr) is
calculated by converting the 2D correlation function in

rectilinear coordinates into radius and azimuthal co-

ordinates and then integrating at each Dr over all the
available angles. If one is concerned with drop counts,

multiplication by the SPCFC converts the radial cor-

relation function into the so-called radial distribution

function of particle counts.

Finally, let us consider how a correlation function is

related to the variance of a quantity. With regard to

statistically homogeneous data, that is, data for which

the statistical properties do not depend on location such

as over the 2DVD area for sufficiently brief periods, this

relation can be demonstrated by considering an expo-

nentially decreasing r(Dr) as in Fig. 1. The Fourier

transform of r(Dr) is the variance spectrum of the

counts, that is, themagnitude of the variance as a function

of wavenumber (inverse wavelength; Wiener 1930;

Khintchine 1934; Blackman and Tukey 1975). Obvi-

ously, as the variance increases, r(Dr) decreases and
vice versa. This behavior has also been observed di-

rectly (Chudnovsky et al. 2013). It is also apparent

that if the results in Fig. 1 were naively extrapolated

to very small distances on the order of several centi-

meters, they would imply that r(Dr) should be near

unity with very small variance. Indeed, it is one rea-

son for the prevalent idea that, over sufficiently small

areas, fields like total rainfall smooth out, given enough

time. However, such an extrapolation is misleading be-

cause Fig. 1 is based on a decreasing exponential corre-

lation function having a characteristic 1/e length of 1km.

This implies measurements over a network having a di-

mension up to at least this scale in order to resolve a 1-km

wavelength. But what does that really tell us about ob-

servations on the much smaller scales of centimeters?

Before addressing this explicitly in the next section, it is

helpful first to show a few observations.

3. Data and analyses

a. The 2D spatial correlation functions

The 2DVD is located at the historic Dixie Plantation

near Hollywood, South Carolina; this property (owned

by the College of Charleston Foundation) is used for a

variety of ecological, educational, and research pur-

poses. The site is located at 3284402600N, 8081003600W.The

primary data in these analyses occurred ahead of an

approaching warm front with synoptic onshore flow

from the east at a maximum of 5m s21 on 23 November

2014 beginning at 0815 EST and lasting continuously for

slightly longer than 770min, with a period of more in-

tense rain from 0 to 450min followed by a period of

lighter rain. During this period it was found that 10-min

intervals yielded an average of almost 100 drops of di-

ameter D larger than 0.6mm every square centimeter

with many hundreds of such drops during the more in-

tense rainfall.

One concern is the so-called ‘‘shadowing’’ effect of

edges when a large tangential velocity of the wind

passing over the instrument might distort the distribu-

tion of small drops near the upwind edge of the detector.

For the data discussed here, the wind speeds were low

(the synoptic wind speed was only 3ms21 on that day),

and we only consider drops at least 0.6mm in diameter

having a fall speed sufficient so that they would not re-

spond to such wind distortions as discussed further be-

low. Moreover, just to be safe, we also eliminate edge

counts. That is, drop positions ranged from 1 to 13 cm,

FIG. 1. An example of an exponential decaying correlation

function having a 1/e correlation length of 1 km and its associated

variance spectrum as a function of wavelength l. Small variance is

associated with larger correlation and vice versa.
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but we only considered those that were within 2–12 cm.

Plots show that this is very effective in eliminating

potential cutoff effects at edges.

Figure 2 is a plot of the average rainfall rate R over

the entire detector every 10min as well as the average

total number of drops Nt per square centimeter having

D $ 0.6mm. By and large, these data do not appear to

be statistically stationary over the entire period. How-

ever, using the time series analyses approach ofAnderson

and Kostinski (2010, 2011), the data are actually nearly

statistically stationary to within less than 1s of a 5 0, so

that these fluctuations are likely due to correlations.

Consequently, over each individual 10-min period the

observations are taken to be statistically stationary. Even

though the clustering of drops in time and in space are

different (Jameson et al. 2015), over the small area of the

2DVD, we also then assume that this stationarity implies

that the observations are statistically homogeneous.

To investigate what happens spatially, the total drop

counts and total rainfall are plotted in Figs. 3a and 3b,

respectively. Significant spatial structures are clearly

evident even when summing over the entire 770min.

Here it is important to note that such features need not

always be present. Furthermore, it is worth noting that

on other days spatial features are still present, but they

are located elsewhere on the grid. The spatial features

are quite similar and have a 2D cross-correlation co-

efficient of 0.955. Figures 3c and 3d show what the fields

should have looked like had the x and y position of each

drop been completely random. Unlike Figs. 3a and 3b,

Figs. 3c and 3d do not show any particular structure, and

they are completely different, having a 2D cross-

correlation coefficient of only 0.047. Since structure is

an indicator of correlation (Jameson and Larsen 2016a),

these figures strongly suggest that even over a long time

period and even over this small of a domain, some spa-

tial correlation is retained, leading tomuch larger spatial

differences than pure randomness would have gener-

ated. Moreover, there is apparently a physical connec-

tion between the total number of drops and the total

rainfall that disappears when x and y are randomized.

This will be discussed further later.

One response to such structure is ‘‘of course.’’ After

all, Jaffrain and Berne (2012) and Jameson et al. (2015)

both show a high degree of correlation near null spatial

separations. While this is true, extrapolation of these

findings to near zero suggests that the correlation should

have been nearly perfect so that every square centimeter

should have had nearly the same value with small de-

viations. Obviously, this is not the case.

To see why this happens, it is first necessary to

compute the 2D correlation function for each 10-min

interval as described in the previous section. However,

an accurate calculation of this quantity requires a good

estimate of what the true mean value is during each

10-min spatial sample. Using minute-to-minute correla-

tion functions, it was found that bothR andNt completely

decorrelated in 30min. Consequently, we use the 10-min

values on either side of a particular 10-min interval to

compute a least squared error–weighted estimate of the

true mean for that interval and area of the 2DVD. These

values are plotted for Nt and R in Figs. 4a and 4b, re-

spectively. Here it is worth reminding the reader that

spatial and temporal correlations are different (Jameson

et al. 2015), so that a 30-min temporal decorrelation does

not determine the spatial decorrelation length. To see

this, one can imagine the hypothetical situation of a line

or area of points having a steady particular spatial re-

lation of values, but with the values at all the points

varying temporally in unison so that they decorrelate in

time without changing their spatial relation.

The averages of r(Dr, u) over 77 ten-minute intervals

are plotted in Fig. 5. While there are rapid drops in the

correlation within the first 2 cm in Figs. 5a and 5b, the

values remain substantial (.0.55) over the remainder of

the area with some apparent anisotropy. On the other

hand, for random x and y (Figs. 5c,d), the correlation

drops to very small values by 2 cm, not surprisingly, with

values near zero over the remaining area. These results

are reflected in the corresponding radial correlation

functions as illustrated in Fig. 6. It is well known that the

domain size affects the correlation function (e.g.,

Krajewski and Duffy 1988). Indeed, that is why the do-

main size is cut by two when showing the correlation

functions. However, Fig. 6 shows that for random un-

correlated counts, the radial correlation drops to zero by

one-quarter of the domain size, whereas the observed

FIG. 2. Time series of the 2DVD 10-min average rainfall rate and

the 10-min average number of drops per square centimeter during

the 770-min rain.
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correlation functions continue quite strongly. Thus, the

correlation appears realistic. Now another possible

source of correlation is the inadequate estimation of the

mean. First, the counts over each square centimeter are

adequate since the relative error (s/m) that includes the

effect of correlation is only 2%. The spread in the counts

is, therefore, 7s. Furthermore, we described above (see

Fig. 4) the method for estimating the network-wide

mean values as a function of time. Hence, we are con-

fident that our resulting correlation observations are

meaningful.

We conclude, therefore, that the 2D correlations over

such a small domain are real but certainly less than the

values near unity implied by the extrapolation of results

from observations at coarser resolutions. This also im-

plies larger variances than might have been anticipated.

Why is this?

The explanation is that there is a subtle scaling of the

correlation function with spatial resolution. That is, as

Fig. 1 illustrates at large wavelengths (coarse spatial

resolution), the small wavelength variances do not

contribute significantly and, therefore, the correlation

function does not ‘‘feel’’ their presence. However, as the

wavelength resolution decreases, the contribution of the

variances at longer wavelengths decreases because of

filtering (i.e., the changes introduced at larger scales

FIG. 3. Contour plots of the (a) total number of drops in 1-cm2 boxes across the 2DVD viewing area over 770min, (b) total rainfall in

each box, (c) total number of drops had the x and y positions of each drop been random, and (d) total rainfall had the drops positions been

random. Obviously, there is much more structure in (a) and (b).
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become part of the mean that is then removed when

calculating the variance). Consequently, at finer spatial

resolutions the variances associated with smaller wave-

lengths increase in relative importance so that the re-

sulting correlation is reduced below what would have

been expected by inappropriately extrapolating results

at coarse resolution to finer resolutions. In other words,

in that sense the correlation ‘‘scales’’ with resolution,

but it is important to note that this scaling does not imply

nor require fractal structure. The filtering of the vari-

ance with decreasing spatial resolution alone is appar-

ently sufficient to scale the correlation function.

b. Raindrop energy and power

The existence of correlated structures in both the

rainfall and total number of drops suggests that other

such structures exist for other variables. One of the most

important of these is the kinetic energy of the drops that

plays a significant role in the process of soil erosion. Yet

there is no information concerning the spatial structure

of this variable over such small but important sizes of

domains. That is, erosion is basically a small-scale phe-

nomenon in which soil particles must first be dislodged

by the kinetic energy (KE) of the larger drops and then

carried away by the steadier supply of smaller drops

(Kinnell 2005; Caracciolo et al. 2012).

Furthermore, as pointed out in a number of other

contexts (Emanuel 2005; Wilson and Makris 2008), it is

not just the kinetic energy (}V2) that is important but

also the rate at which it is being delivered (}V3), where

V is the velocity of the air in hurricanes or the velocity of

the rain drops. For the latter, this rate of delivery of

kinetic energy has been referred to as rain power (Gabet

and Dunne 2003), which is expressed as the time de-

rivative of the rainfall rate. A more physically based

definition is the drop impact power (IP) in which the

kinetic energy of a drop of diameter D is delivered in a

characteristic time of D/V, where V is the speed of the

drop. Up to now, measurements of the kinetic energies

and powers have been made at coarse resolutions in

which the finescale structure is invisible. Yet, how this

energy and power are distributed spatially over small

areas in real rain is critical for a better characterization

of the process of soil erosion (Gabet and Dunne 2003;

Kinnell 2005).

To address this deficiency, we compute both the KE

and IP for this rain event as illustrated in Fig. 7. Even

over this small area and over 770min of observations,

there is considerable variability of roughly 630%

around a mean value. These structures are reflected in

the corresponding radial correlation functions (Fig. 8)

for both KE and IP, which are essentially identical.

However, what this illustrates is that microstructure on

the centimeter scale exists and can significantly influ-

ence processes such as soil erosion. It is also likely that

just as for the rainfall rate, the variabilities of both KE

and IP increase with increasing spatial dimension

(Jameson and Larsen 2016b).

Furthermore, studies using observations on larger

scales suggest power-law relations between the rainfall

rate and both KE (Brodie and Rosewell 2007) and the

rain power (Gabet and Dunne 2003) having exponents

in the range from near 1.1 to 1.4. In Fig. 9, the heavy

dashed lines are linear fits over the observations. For

both KE and IP, the correlations are 0.999 so that both

FIG. 4. Plots of the (a) estimates of the 10-min true mean of the

total number of drops and (b) 10-min estimates of the 1-cm2 true

mean rainfall rate. Both are required for proper estimation of the

2D correlation function.
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variables can justifiably be considered to be linearly

related to the total rainfall. However, these fits have

nonzero intercepts at zero total rainfall. By forcing all

the variables to intercept at zero, however, we then

find power laws similar to those just mentioned. This

is encouraging because it suggests such relations exist

even over the scales most relevant to the earliest

stages of soil erosion, but as Caracciolo et al. (2012)

emphasize, it is the drop size distributions (DSDs)

that are the bases for such relations. Hence, the var-

iability evident in Fig. 9 must be a reflection of the

variability of the DSD. However, the expression ‘‘drop

size distribution’’ is somewhat ambiguous because a

DSD consists of two components, namely, the total

number of drops and the frequency distribution of the

drop sizes P(D)dD, which expresses the probability

of finding a drop with a diameter lying betweenD and

D 1 dD, so that the DSD 5 Nt 3 P(D)dD. With re-

spect to the erosion capacity of rain, we find in the

next section that the sizes of drops appear to be less

important than the total number of drops for good

physical reasons.

FIG. 5. Contour plots of the average of 10-min 2D correlation functions for the (a) total number of drops (D$ 0.6mm), (b) rainfall rate,

(c) random drop position total number of drops, and (d) rainfall rate when the drop positions are random. A dramatic decrease in the

spatial correlations caused by drop position randomization as compared to the observations is apparent.
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c. On the 2DVD spatial variability of DSDs

The sampling of a DSD depends on the underlying

statistics. If the statistics are stationary in time or ho-

mogeneous in space, Jameson and Kostinski (2002a)

found that it takes from tens of thousands to 100 000 or

more drops to define a DSD with sufficient accuracy to

develop the correct relations among integral properties

such as the rainfall rate and the radar reflectivity. This

has also been confirmed in Larsen and O’Dell (2015,

manuscript submitted to J. Atmos. Oceanic Technol.). If

the statistics are nonstationary in time or heterogeneous

in space, then the DSD keeps changing as more obser-

vations are combined without necessarily ever con-

verging to a ‘‘steady’’ DSD (Jameson and Kostinski

2001). Here, we consider the entire set of data to see if

they remain statistically homogeneous over the small

observation area of the 2DVD. In that case, we have

around an average (Fig. 3a) of 5500 drop counts per

square centimeter, so that we can begin to explore the

variability of the DSD at centimeter resolutions. While

even this number of drops makes the definition of a

complete DSD every square centimeter dubious, we can

at least look at some integral properties beginning with

the number-weighted mean diameter hDi (plotted in

Fig. 10). This is chosen because, for exponential distri-

butions, it is the inverse of the slope of the entire dis-

tribution (Kostinski and Jameson 1999). One is free to

use other parameters, but this is sufficient for our pur-

pose here, and more subtle differences are presented

shortly.

Obviously, the variability in hDi is very small,

amounting to only around 0.02mm from the largest to

the smallest values. This is the same as the resolution

limitation of the drop size by the 2DVD, so such varia-

tions are not likely to be of any significance. So instead

of just hDi, let us instead consider the average spread of

the different drop sizes for D $ 0.5mm for each square

centimeter. This is given by the RD (5sD/hDi), where
sD and hDi are the standard deviations and mean sizes

of all the drops, respectively, for each square centimeter.

This is illustrated in Fig. 11.

The RD values are quite small. Had the distributions

been exponential and extending over [0, ‘), the relative
dispersion would have been unity. One might suspect

that truncation of exponential distribution at larger drop

sizes might be responsible for shrinking the RD from

FIG. 6. The radial correlation functions corresponding to Fig. 5.

FIG. 7. Contour plots of (a) observed total KE of the rain and (b) IP

showing persistent differences and structures on small scales.
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unity to the observed values. However, calculations

show that for the minimum diameter of 0.6mm used

here, truncation at the larger drop sizes actually in-

creases RD of an exponential to even greater values.

Hence, with reasonable certainty we can at least con-

clude that on scales of 1 cm2, the DSDs are not expo-

nential, but overall, the RD suggests that they are likely

pretty similar, even though we cannot precisely de-

termine their form at the 1-cm2 scale.

However, if we combine several 1-cm2 values together

we will have enough drops to form a reasonable im-

pression of a size distribution. To do this, we divide the

area defined by 1 # X # 10 cm and 2 # Y # 11 cm into

four sections each 5 cm3 5 cm to give an average of over

130 000 drops for estimating the DSD over each quad-

rant. The results are shown in Fig. 12.

The full DSDs5Nt3P(D)DD are plotted in Fig. 12a,

which clearly shows that they are quite similar. More-

over, if we perform a fit on all four P(D)DD (Fig. 12b),

we find that the distributions are nearly identical and

exponential. However, they are not perfectly identical,

as Fig. 12c demonstrates. Here, we plot the accumulated

absolute values of the differences between the mean

distributions of drop sizes (PSD) in each quadrant from

the overall average distribution (hPSDi). While there

are clear differences above about 2.5mm diameter, the

total deviations from the mean PSD over all the distri-

butions are quite similar. Without much error, then, we

conclude that over a sufficient number of square-

centimeter elements, the DSD do become essentially

statistically homogeneous over the area of the 2DVD.

For statistically homogeneous conditions (steady rain;

Jameson and Kostinski 2002b; List 1988), Jameson and

Kostinski (2002a) show that every integral property Z

can be expressed as a linear function of the total number

FIG. 8. The radial correlations functions corresponding for the KE

and IP.





FIG. 9. Scatterplots and power-law fits of the total KE and total IP vs the total rainfall as

discussed in the text.
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of drops, that is, Z5CDpNt 5CZNt where CZ 5CDp,

and whereDp expresses the power dependence of Z onD

andC is a constant. In other words, all integral parameters

are linearly related toNt, and therefore they are all linearly

related to each other. In particular, the rainfall rate is then

linearly related to KE and IP, which are also then linearly

related to each other. An example is provided in Fig. 13,

where the 1-cm2 values in Figs. 3a and 3b are plotted in a

scatter diagram. It is clear that the rainfall rate is linearly

related to the total number of drops. Consequently, KE

and IP should be linearly related to R. Even in statistically

heterogeneous and nonstationary conditions, over a finite

set of measurements there are still mean values of Dp so

that linearity still persists (Jameson et al. 2015) among

integral properties but with greater scatter.

The fit of R–Nt in Fig. 13 contains a constant that

would yield negative R at Nt 5 0. Obviously, this is

nonsense brought about by the particular set of data

used in determining the fit. One can, however, impose

the additional constraint that R 5 0 when Nt 5 0. The

imposition of this constraint leads to deviations from

linearity in the relations between integrated parameters.

This is not surprising because the constraint imposes a

source of statistical heterogeneity not accounted for in

the mean value ofDp. Thus, in Fig. 13, imposition of this

constraint leads to a power-law relation (green). Simi-

larly, power-law relations appear in Fig. 9 even though

the variables are clearly linearly related over the range

of the set of observations. The net conclusion, however,

is that the variabilities evident in Figs. 3b and 7 arise

from the variability in Nt, not from the variability in

P(D). Thus, whileP(D) contributes to relationship among

integrated variables, it is Nt that drives their spatial

variability.

This is similar to the findings when the characteristic

length of a domain exceeds 1 km (Jameson and Larsen

2016b) and when it is only the dimension of a single

Joss–Waldvogel disdrometer (Jameson 2015). On such

small dimensions over reasonable times, the centimeter

variability of P(D) simply washes out, leaving Nt as es-

sentially the sole contributor to the variability of R.

Thus, there appears to be a regime between around a

few meters to 10m out to distances approaching 1 km

whenP(D) is an important factor driving the variability

of the rainfall rates (Fig. 10; Jameson and Larsen

2016b); otherwise, Nt is of the greatest importance and

should be considered the origin of rainfall variability

on most scales.

4. Summary

A 2DVD probe was used to gather detailed drop

measurements over a 770-min rain event near Charles-

ton, South Carolina, on 27 November 2014. Accumu-

lated totals of the rainfall and of the number of drops for

each square centimeter showed significant differences

across the approximately 11 cm 3 11 cm grid of the

2DVD. This is surprising because larger-scale studies

suggest that the values in each square centimeter should

be highly correlated with very little variation.Moreover,

these differences were not random but were spatially

correlated, yielding structures. The spatial correlation,

however, is strikingly similar to what is observed at

coarser resolutions, suggesting that the spatial correlation

FIG. 11. A plot of the average RDs of the drop sizes indicating

that the spread of the size distributions changes only slightly, as

discussed in the text.

FIG. 10. The average number-weighted mean diameter for each

1 cm2. The variations are slight and on the order of the diameter

resolution of the 2DVD.
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scales in some fashion with resolution. However, because

the observed correlation functions are not power laws,

the origin of this scalingmust be due to a factor other than

fractal geometry. It was concluded that this scaling with

resolution occurs because of a filtering effect such that

as a resolution becomes finer and finer, it is only the

smaller scales that contribute most to the variance. These

determine the local correlation function. However, as the

resolution becomes coarser and coarser, the finescale

contributions to the variance become negligible, so

that it is the larger scales that then determine the

correlation function. The important point, however, is

that one cannot extrapolate coarser-resolution obser-

vations to infer the absence of structures on finer

scales. As we see in this study, there is structure even

on 10-cm scales over long times.

This fine structure was also found for the kinetic en-

ergy (KE) of the rain.An impact power was then defined

for each drop as the KE of the drop delivered in a

characteristic time ofD/V, whereD is the drop diameter

Δ

Δ
ρ

Σ 

FIG. 12. Plots of the (a) DSD5 Nt 3 P(D)DD over four quadrants of the 2DVD sampling area and (b) fit to P(D)DD (5PSD) for the

four quadrants, illustrating that the distributions are quite similar but not perfectly identical (c) when absolute deviations from the mean

PSD are summed over the entire sample interval.
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and V is the fall speed of the drop. Summation over all

the drops then yields the total rain impact power (IP).

Both of these quantities are important to initiating soil

erosion (Brodie and Rosewell 2007; Kinnell 2005), and

both showed structure and significant correlation across

the sampling area of the 2DVD. This suggests that it is

not sufficient just to use only coarse-resolution data

when studying soil erosion, particularly since it is initi-

ated at the soil particle scale.

We also considered variations in the drop size distri-

bution (DSD). The DSD is given by Nt 3 P(D)DD,

whereNt is the total number of drops andP(D)DD is the

frequency distribution of the drop sizes. It was found

over the 770min that net spatial patterns of P(D)DD
were small, occurring mostly at larger drop sizes. Con-

sequently, the net patterns in the various parameters

such as the rainfall, KE, and IP can be attributed pre-

dominately to the net spatial patterns of Nt over the

period of observations and not somuch to the patterns in

P(D)DD. Therefore, in future studies it is important to

keep careful track of the total number of drops.

Finally, if the rain is steady (Jameson and Kostinski

2002b), significant spatial structures need not appear,

depending on the amount of correlation. However, when

the rain shows significant fluctuations in time, as often

occurs in convective situations, spatial structures such as

the one example described here are likely present.
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