
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Department of Physics Publications Department of Physics 

3-31-2015 

Disdrometer network observations of finescale spatial–temporal Disdrometer network observations of finescale spatial–temporal 

clustering in rain clustering in rain 

A. R. Jameson 
RJH Scientific, Inc., El Cajon, California 

M. L. Larsen 
College of Charleston 

A. Kostinski 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/physics-fp 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Jameson, A. R., Larsen, M. L., & Kostinski, A. (2015). Disdrometer network observations of finescale 
spatial–temporal clustering in rain. Journal of the Atmospheric Sciences, 76(3), 1648-1666. 
http://dx.doi.org/10.1175/JAS-D-14-0136.1 
Retrieved from: https://digitalcommons.mtu.edu/physics-fp/176 

Follow this and additional works at: https://digitalcommons.mtu.edu/physics-fp 

 Part of the Physics Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/physics-fp
https://digitalcommons.mtu.edu/physics
https://digitalcommons.mtu.edu/physics-fp?utm_source=digitalcommons.mtu.edu%2Fphysics-fp%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.mtu.edu%2Fphysics-fp%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1175/JAS-D-14-0136.1
https://digitalcommons.mtu.edu/physics-fp?utm_source=digitalcommons.mtu.edu%2Fphysics-fp%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.mtu.edu%2Fphysics-fp%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages


Disdrometer Network Observations of Finescale Spatial–Temporal
Clustering in Rain

A. R. JAMESON

RJH Scientific, Inc., El Cajon, California

M. L. LARSEN

College of Charleston, Charleston, South Carolina

A. B. KOSTINSKI

Michigan Technological University, Houghton, Michigan

(Manuscript received 12 May 2014, in final form 6 November 2014)

ABSTRACT

The spatial clustering of drops is a defining characteristic of rain on all scales fromcentimeters to kilometers. It

is the physical basis formuch of the observed variability in rain. The authors report here on the temporal–spatial

1-min counts using a network of 21 optical disdrometers over a small area near Charleston, South Carolina.

These observations reveal significant differences between spatial and temporal structures (i.e., clustering) for

different sizes of drops, which suggest that temporal observations of clustering cannot be used to infer spatial

clustering simply using by an advection velocity as has been done in past studies. It is also shown that both spatial

and temporal clustering play a role in rain variability depending upon the drop size. Themore convective rain is

dominated by spatial clustering while the opposite holds for the more stratiform rain.

Like previous time series measurements by a single disdrometer but in contradiction with widely accepted

drop size distribution power-law relations, it is also shown that there is a linear relation between 1-min averages

of the rainfall rate R over the network and the average total number of dropsNt. However, the network (area)

R–Nt relation differs from those derived strictly from time series observations by individual disdrometers. These

differences imply that the temporal and spatial size distributions and their variabilities are not equivalent.

1. Introduction

That rain is spatially variable is well recognized (e.g.,

Krajewski et al. 2003; Koutsoyiannis 2006; Molini et al.

2009; Smith et al. 2009; Jaffrain et al. 2011; Jaffrain and

Berne 2012). While there have been important strides in

the development of a broad spectral statistical frame-

work for treating the spatial–temporal statistical char-

acterization of some bulk parameters such as the rainfall

rate (Kundu and Travis 2013), no such framework is

possible at the level of individual raindrops without

vastly improved observations. The humble purpose of

this study is simply to present some observations that we

hope will contribute toward reaching that goal one day.

In particular, none of the studies just mentioned ap-

proach the physical origins of this variability as a prob-

lem in statistical physics on the level of individual drops.

Little is known about the spatial distribution of rain-

drops of various sizes themselves, particularly over

scales of less than 100m. Yet the existence of small-scale

drop structures on meter scales is not surprising to

anyone who has watched rain from a thunderstorm

(Fig. 1a), particularly as it sweeps across the pavement

(Fig. 1b). The white streak extending several meters in

length and 1 or 2m wide across the darker road is one

example of a patch of larger drops that splashes, pro-

ducing an optically reflective cloud of drop fragments.

Aside from suggesting a very dynamic view of the

meaning of a drop size distribution (DSD) rather than

the stagnant one usually considered (Jameson and

Kostinski 2000), this particular patch was observed by

the lead author to sweep across the road in a matter of
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seconds while maintaining its overall structure. This

alone highlights the potential difference between tem-

poral and spatial clustering as well because a single

instrument would have only seen the width of this streak

in time as it passed over the instrument, and it would

have entirely missed its length without additional in-

struments. It should come as no surprise, then, that

spatial and temporal clustering likely differ.

This spatial heterogeneity seems to exist even on

scales of centimeters (e.g., Jameson and Kostinski 2000,

their Fig. 3 and text on p. 376; Kostinski et al. 2006) al-

though that has not yet been directly measured. On the

other hand, such bunching or clustering of the rain is also

found up to at least the typical kilometer scales of most

radar sample volumes (Jameson 2008). Thus, clustering

appears to be an important characteristic of rain struc-

ture over a broad range of scales. What we do in this

study is to look directly at some of the finest spatial

scales from a few meters to 100m directly rather than

trying to infer them from temporal observations as was

necessary in the past.

What do we mean by clustering? Specifically, clus-

tering is the enhanced concentration (and dilution) of

particles associated with increased (decreased) correla-

tions of scatterers in neighboring volumes. That is,

scatterers are said to be spatially correlated (usually

expressed using the pair correlation function; e.g.,

Kostinski and Jameson 1997) when the number of drops

occurring in an observation interval at one time or lo-

cation is significantly correlated with the number of

drops occurring at a different time or location. Ex-

panded discussions can be found in Kostinski and

Jameson (1997) and subsequent articles. On the other

hand, statistical heterogeneity is the result of changing

conditions such that the statistics of the observations

depend upon the location or time of the measurements.

Consequently, there is increased variance in rain ob-

servations 1) because of statistical fluctuations (often

taken to be fluctuations in a Poisson distribution) are

modulating ‘‘local’’ means (i.e., clustering; Jameson and

Kostinski 1996, 1846–1848) and 2) because there are

systematic changes in the observed longer-term or larger-

scale means associated with statistical heterogeneity.

Clustering can occur in both space and time. So far,

however, all studies of clustering have only had access to

temporal measurements. A spatial interpretation has

then been inferred using an advection velocity to

transform time into space. Features that advect un-

changing past a detector are then simply linearly con-

verted to their spatial equivalent. Until now, the validity

of this assumption with regard to clustering remains

unknown. Li et al. (2009) have already shown that such

an assumption is not valid for the space–time covariance

structure of a rain field on time and space scales greater

than 15min and 4km, respectively. One of the central

purposes of this work is to investigate the likely ac-

ceptability of such a transformation on much finer scales

with respect to individual drops.

A similar question arises with regard to DSD. That

is, how representative is a temporally averaged DSD

compared to a spatially averaged distribution? While

a detailed response to this question is the subject of

a different paper, using the network of instruments de-

scribed below, we can at least provide some insight by

considering the relation between the rainfall rate R and

the total number of drops Nt. In statistically homoge-

neous rain, it is known that R }Nt exactly (Jameson and

Kostinski, 2001b) where the constant of proportionality

is related to amoment of the size distribution P(D) and

is therefore, a function of P(D). Even in time series

observations in statistically nonstationary rain, a similar

FIG. 1. (a) Picture of rain shafts illustrating the variability of the

rain over many scales. The distance to the storm is several kilo-

meters. (b) Example of a meter-scale white rain streak as it moved

across a road delineated by the recycle bin in the lower right and

the flag toward the upper center.
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relation but with much more scatter appears to hold

(Jameson 2014) implying that an average P(D) exists in

statistically nonstationary rain. The question is, does it

apply to spatial observations as well? We examine the

answer below by considering differences between R and

Nt for spatially averaged values over a network as

compared to temporal time series relations for in-

dividual detectors. That is, if one were use the time se-

ries from a single detector and if one were to assume

a simple advection velocity transformation for an esti-

mate of P(D) as expressed vis-á-vis a relation betweenR

and Nt, how much would that relation differ from that

for spatially averaged values over a network?

One of the unique aspects of this study is the close

proximity of so many optical disdrometers. To be sure,

there have been other studies using networks of dis-

drometers but these have been focused more on differ-

ent objectives. For example, data from a grid of six

disdrometers separated by 1.25–1.4m have been ana-

lyzed (Tokay et al. 2005) but only with respect to long-

term averages. More recently, Tokay and Bashor (2010)

considered measurements using three disdrometers

along a line with a minimum separation of 600m.

However, as in many past studies, that work focused on

integrated quantities and parameters of an assumed

form for the DSD rather than on the characterization of

individual drop sizes. Most recently, Jaffrain and Berne

(2012) report an important study in Lausanne, Switzer-

land. There they set up a network of optical disdrometers

over a 1-km2 area. Unlike our network, all but one (85m)

separation distances were greater than 100m. Moreover,

in contrast with the work presented here, Jaffrain and

Berne (2012) focused on spatial correlations of in-

tegrated quantities including the rainfall rate, the total

number of drops, and the mass-weighted mean di-

ameters. That is not our purpose here, where we are

most interested in the small spatial and the temporal

characterization at the level of individual drop sizes.

There are both practical and scientific reasons for

wanting to understand better the meter-scale charac-

teristics of rain. While such structures can affect the

interpretation of radar measurements (Jameson 2008;

Jameson and Kostinski 1996, 2008, 2010), for example,

a more compelling practical concern is soil erosion.

Nearly one-third of the world’s arable land has been lost

to soil erosion since 1950 (Pimentel et al. 1995). More-

over, soil erosion is estimated to have caused $27.9

billion in the United States in 1997 alone (Uri and Lewis

1999). It is estimated by the USDA (http://www.nrcs.

usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_

051278.pdf) that 55% of all soil erosion is caused by

water impacting the soil. This, of course, depends upon

the kinetic energy of the drops (Kinnell 2005) and,

therefore, it depends upon the drop size distribution.

Most of this occurs as drops and clusters of drops dislodge

the particles (e.g., Caracciolo et al. 2012), which are then

carried away. A more complete understanding and

parameterization of this process depends upon detail-

ing the fine structures of the rain.

Aside from such practical justifications, however, there

are also scientific reasons for having an interest in small-

scale features in rain. For decades, the evolution of pre-

cipitation through collision, coalescence, and breakup has

been considered to be adequately understood in time

using one-dimensional models. Recently, however, it has

become clear that the problem of precipitation evolution

is, in time, truly three-dimensional (e.g., Jameson and

Kostinski 2001a). That is, there is a spatial–temporal

clustering or bunching of raindrops that complicates drop

interactions more than can be handled using only a one-

dimensional model. Indeed, the very existence of rain

streaks requires using greater spatial dimensionality.

Since these interactions occur on scales of less than 1 cm

up to several meters, depending on several factors such as

the relative fall speeds of the interacting drops, it is im-

portant to begin to describe at least the two-dimensional

spatial structures of rain. As of today, this has never

been done on the appropriate spatial scales even at the

ground much less aloft.

The central objective of this work, then, is to present

some initial results from a unique network of 21 optical

disdrometers that provide 1-min counts over 22 size bins

to explore the differences between the spatial and

temporal characterization of rain over dimensions less

than 100m. In particular, with these spatial observa-

tions, we can finally compare spatial and temporal

clustering (variability), and we can investigate the ap-

plicability of the advection velocity translation of tem-

poral to spatial measurements used in past studies.

2. A few definitions

As explained in greater detail and as illustrated in the

appendix, these disdrometers are spaced logarithmically

along three arms extending from a common origin out to

100m along two of the arms and out to 52m on one arm

that was limited by placement restrictions imposed by

caretakers of the historical site. Two of the arms are

orthogonal with the central one lying at 458 between

them. In addition, there is now a 2D video disdrometer

placed near the origin that will be used to study micro-

structures but was not present for inclusion in this study.

Thus, the focus here is on meter scales and times from

minutes up to durations of the rain events. Before ana-

lyzing the data, however, we first describe some meth-

odology and present a few useful definitions.
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In this work, there are both qualitative and quantita-

tive observations. While the qualitative aspects will be

readily apparent, it is necessary to briefly define two of

the quantitative measures: namely, the temporal and the

spatial pair correlation functions, which describe the

clustering or bunching of objects either in time or in

space. Consider a test volume V containing N5 nV

drops. If we represent the random number of drops of

a single size in a unit volume by n, say, then for a statis-

tically homogeneous random field (in time and space),

the joint probability P(1, 2) of finding two drops in small

volumes dV1 and dV2 (one in each) separated by dis-

tance l is given by (e.g., Green 1969, 62–63)

P(1, 2)5 n2dV1dV2[11h(l)] , (1)

where h(l) is the so-called pair correlation function.

Note, however, that statistical homogeneity does not

imply nor require physical homogeneity. Patchy, physi-

cally inhomogeneous rain can be fully consistent with

statistical homogeneity. A complete derivation may also

be found in Landau and Lifshitz (1980, p. 351). One of

the original purposes of the pair correlation function was

to quantify the scattering of light because of molecular

clustering in liquids (Ornstein and Zernike 1914) with

the onset of critical opalescence during phase transition.

It has since been used to quantify the distribution of

galaxies in space to determine whether they were dis-

tributed randomly (Peebles 1993, 457–475) as well as the

clustering of raindrops (Kostinski and Jameson 1997).

While the pair correlation function can be applied to the

total number of drops, in this work we largely focus on

drops of a particular size.

More generally, the pair correlation function depends

upon both time and location. This can be estimated

operationally (Kostinski and Jameson 2000, p. 902) as

h(Dl,Dt jD)5
hn(l, t jD)3 n(l1Dl, t1Dt jD)i2m(D)2

m(D)2
,

(2)

where n(l, t jD) and n(l1Dl, t1Dt jD) are the numbers

of drops given diameter D in a unit volume at (l, t) and

(l 1 Dl, t 1 Dt). Note that zero counts are valid contribu-

tions to h. When we let l be fixed so that distance Dl/ 0,

we have the pair correlation function in time. This is

sometimes referred to as the clustering index (CI) (e.g.,

Baker and Lawson 2010; Chaumat and Brenguier 2001;

Larsen 2012). Equation (2) then becomes

h(0,Dt jD)5
hn(l, t jD)3 n(l, t1Dt jD)i2m(D)2

m(D)2
. (3)

That is, in practice, using one instrument we count the

number of drops every unit interval, in this case 1min,

over each size bin over the observation interval T. This

is our time series of observations. For each time lag Dt
(in this case an integer number of minutes) and for

each drop size bin, we then compute the average value of

n(l, t) 3 n(l, t 1 Dt) over T (denoted by the angle

brackets). We then divide this result by the square of m2,

the average number of drops every unit interval com-

puted for that instrument over T, and subtract 1. In the

limit as Dt / 0, we then have the clustering index co-

efficient (CIC) as discussed inmany papers (e.g., Jameson

and Kostinski 1999, p. 3924). It provides a measure of the

strength of the clustering of the dropswith respect to time.

In an analogous manner, operationally the spatial pair

correlation function (SPCF) along a line is simply given

setting Dt to 0; that is,

h(Dl, 0 jD)5
hn(l, t jD)3 n(l1Dl, t jD)i2m(D)2

m(D)2
. (4)

In practice, we count the number of drops every minute

over each size bin over interval T for two instruments

separated by Dl. This is our time series of observed

SPCF. For each Dl and for each drop size bin, we then

compute the average value of n(l, t)3 n(l1Dl, t) overT.
We then divide this result by the mean value squared

and subtract 1. In the limit as Dl / 0, we then have the

spatial pair correlation function coefficient (SPCFC).

To maximize the number of different l values, and,

therefore, to provide a more complete estimate of

SPCF, the instruments do not necessarily lie along the

same line. This, in turn, means that different orienta-

tions contribute to SPCF so that the noise will be en-

hanced depending on the amount of anisotropy if it

exists. That is, (4) is defined for observations along

a single line. Each line has a direction. Conditions along

different lines may be different if there is anisotropy.

Combining observations along different lines then con-

tributes to the variability in the observed values in-

creasing noise around amean SPCF.Wewill use SPCFC

to denote the coefficient of the spatial pair correlation

function when l5 0. Note that in general SPCFCwill not

equal the CIC because sampling in time and space are

not necessarily equivalent. Unlike SPCF, SPCFC is

a measurement at a point so that it will not be affected

by any anisotropy should it exist.

A comparison among the outputs for all the in-

struments over the entire interval showed no consistent

biases. That is, the instruments measure counts. The

counts from any one instrument were never consistently

nor persistently too high nor too low at any drop size.

For example, sometimes one instrument would have an
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abundance of small drops, but the next time, a different

instrument would have a surfeit of small drops. Fur-

thermore, for the two time periods identified below, the

record counting statistics approach of Anderson and

Kostinski (2010) over the most relevant drop counts

(0.6–4mm) showed that over each observation interval

separately the data were statistically stationary to a high

degree of reliability (within 1/4–1/2s bounds). With re-

spect to the spatial pair correlation, there are 171 com-

binations of separations over 440min of observations

and 22 drop bins (although we restricted analyses to

0.625–6.25mm). With respect to CIC, there are 440

observations per instrument for calculations. These are

more than sufficient for accurate estimates of both CIC

and SPCFC. Nevertheless, we are dealing with finite

samples so that the bracketed quantities in (2)–(4)

are subject to sampling uncertainties. These are esti-

mated next.

Specifically, the relative error of z 5 s2/m2 is the

sum of the relative errors of the sample mean

squared and of the sample variance, which goes as

K/N2s4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[(N2 3)/N(N2 1)]

p
(e.g., Mood et al. 1974),

where m is the mean counts per minute per instrument

over the interval, N is the sample size (number of min-

utes in this case), andK is the kurtosis of the distribution

of observed n. Many distributions of drop counts n are

represented by gamma distributions for which the kur-

tosis is K 5 3 1 6z. The variance of the sampled mean

squared, however, goes as 2s/
ffiffiffiffi
N

p
. Putting this all to-

gether, we have

Dz

z
5

1ffiffiffiffiffi
M

p 1ffiffiffiffi
N

p
"
2

ffiffiffi
z

p
m

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����
�

3

m4z2
1

6

m4z
2

N2 3

N2 1

�����
s #

,

(5)

where M is defined below. For the observations in this

work, when m# 5, we still have z$ 2 and when m$ 10,

we find z$ 0.3 so that with rare exceptions we can ignore

the m24 terms; then (5) simplifies to

Dz

z
ffi 1ffiffiffiffiffi

M
p 1ffiffiffiffi

N
p

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N2 3)

N2 1

r
1

2

m

ffiffiffi
z

p
#
, (6)

where z is either CIC or SPCFC whenM is unity. This is

used for the uncertainty calculations illustrated later.

We also note that (6) applies not just to gamma distri-

butions but to all symmetric distributions including the

normal distribution. For CIC and SPCFC, M is unity

while, for SPCF,M is the number of pairs of instruments

contributing to the estimate SPCF at separation l.

With these tools we begin the analyses of a rain event

consisting of both a convective and a stratiform component

that began at 1645:00 UTC 23 November 2013 (Satur-

day) and lasted for 440min with maximum rainfall rates

once approaching 250mmh21.

3. Analyses

a. First example

To get a basic feeling for this rain event, the rainfall

rate averaged over the entire network is illustrated in

Fig. 2. Only 2 of the 21 detectors were not in operation

during this event (detectors L and M as shown in the

appendix) so that this average is over 19 of the optical

disdrometers. The two selected time periods for this part

of the analyses are as indicated. Each is 120min long.

Because of the obvious differences in the rainfall

rates, it should come as no surprise that there will be

differences in the plots of the total accumulated rainfalls

during each period. In Fig. 3 we plot the total rainfall

within 30m of the network origin. This highlights the

appearance of structures even over areas as small as

900m2. Figure 3a is for the convective rain, while Fig. 3b

is for the stratiform precipitation. The convective rain

produced a variation (largest minus smallest amounts)

of 18mm (34% of the area mean) in the accumulated

rainfall over 2 h over 900m2. This compares to the 5mm

in accumulated rainfall over 2 h for the tipping-bucket

measurements of Larsen et al. (2010). In contrast, the

stratiform accumulated rainfall was obviously much

more spatially uniform. Here the difference between the

maximum andminimum amount was only 2mm (27%of

the area mean) over 2 h.

FIG. 2. Network-averaged rainfall rate during the 440-min event.

The colors denote the two analyzed periods each 120min in length.
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One of the most important physical origins of the

variability of the rainfall is drop clustering (Jameson and

Kostinski 1999, 2002; Jameson 2008). While Fig. 3 might

then seem to imply that drop clustering is greater in the

convective than in the stratiform rain, this questionmust

be addressed carefully. First, drop clustering is a func-

tion of drop size so that we must know which sizes are

contributing the most to each type of rain. We do this by

FIG. 3. Total rainfall for (a) themore convective and (b) themore stratiform rain as discussed

in the text. The letters in (b) refer to the optical disdrometer identifiers within 42m of the

origin. Note, however, that the contours are based on the observations by all the instruments

interpolated over 100m2 using the conservative method of Watson (1994).
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first looking at the fractional contribution to the rainfall

rates for different drop sizes for both the convective and

stratiform rain over their respective intervals as shown

in Fig. 4. As conventional wisdom would suggest, the

contribution to the convective rain (black line) comes

mostly from the large drops, in this case peaked around

3-mm diameter. On the other hand, the stratiform

lighter rain (red line) is derived mostly from drops in the

1–2-mm-diameter sizes.

With this perspective from Fig. 4, we now look at the

temporal clustering index (CIC) as a function of drop

size for both types of rain. For convenience only the

detectors along arm 3 (see appendix) are illustrated in

Fig. 5, but calculations show exactly the same results for

the other arms as well.

The forms of the two plots are quite similar with the

exception that, in the convective rain, the peak is near

1-mm diameter whereas it is somewhat smaller in the

stratiform rain. However, there are two significant fea-

tures to notice. First, CIC in the stratiform rain is

10 times larger than that in the convective rain. This sug-

gests that the clustering in time is more important in the

stratiform rain than in the convective rain. Second, CIC

at 3-mm diameter is small in the convective rain, sug-

gesting that temporal clustering is not important. These

observations imply that temporal clustering of the rain

should be small in the convective case and that it should

be much greater in the stratiform than in the convective

rain. So where does the clustering apparent in the vari-

able rain rate come from in the convective rain?

This can be addressed by considering the spatial pair

correlation functions (SPCF) as shown in Fig. 6. The

computations involved pairs having different spatial

orientations. This likely produces some of the scatter in

Fig. 6, although recently Jaffrain and Berne (2012)

argued that such paired measurements tend toward

isotropy even on sub-1-km scales. In the convective rain

(Fig. 6a), we now have values that are several times

larger than in the stratiform rain, which is consistent

with the observed patchiness of the rainfall. In the

FIG. 4. The fractional contribution to the rainfall rate by the

different drop diameters in the more convective rain (black) and

the more stratiform rain (red) for detectors within 30m of dis-

drometer A.

FIG. 5. CIC along arm 3 in (a) the more convective and (b) the

more stratiform rain. CIC is obviously much larger in the stratiform

rain than in the convective rain, which is counterintuitive to the

idea that clustering should be larger in the much-more-variable

convective rain. The letters refer to the particular detector (see

appendix). The vertical bars indicate 61s uncertainties for de-

tector A mostly owing to sample size.
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convective rain, CIC and SPCF agree for the 1-mm drop

size so that at that size, the spatial clustering and the

temporal clustering contribute about equally. However,

at the larger drop sizes that contribute most to the

rainfall rate in the convective rain, significant clustering

is evident in SPCF but not in CIC, implying that for

those drops, spatial clustering dominates over weak

temporal clustering. In the stratiform rain, however, the

SPCF values (Fig. 6b) are all much smaller than the CIC

values, particularly at the most important drop sizes of

1–2mm, suggesting that the rain is dominated by tem-

poral, not spatial, clustering.

There are also a few other features worth mentioning.

One is that there are hints of a gradual decrease in SPCF

with increasing separation distance in both the convec-

tive and the stratiform rain as one would expect. Second,

whereas there is a monotonic increase in the SPCF with

increasing drop size in the stratiform rain, this does not

happen in the convective rain. Specifically, in Fig. 6a,

SPCF is greater at 0.625-mm diameters than at 1.125 and

1.625mm. This is highlighted in Fig. 7, where the SPCF

values in the convective rain are plotted for all the small

drop sizes less than 0.625-mm diameter and for the

larger drops. It is particularly interesting that the SPCF

values are so similar for both the smallest and largest

drop sizes that contribute most to the rainfall rate, yet at

intermediate sizes, the SPCF values appear to behave

independently.

There are at least two possible explanations. One is

that this is some kind of instrument effect. This seems

unlikely since there are plenty of drops at all these sizes

and since the behaviors at all of the smaller sizes appear

to be consistent. An alternative, but unproven, expla-

nation could be that in the convective, intense rain, the

spatial pair correlation (SPCF) of the larger drops is

conserved as the small drops are created during drop

breakup of the large drops. This is consistent with recent

observations of superterminal fall speeds of small drops

FIG. 6. Plots of the spatial pair cross-correlation function for five

different drop sizes in (a) the more convective and (b) the more

stratiform rain as discussed in the text. Fluctuations around the

mean curve approximately indicate the level of uncertainty. Some

61s uncertainty bars at a few selected separations have been

added for the largest drop sizes to give a feel for some of the largest

sampling uncertainties.

FIG. 7. The spatial pair cross-correlation functions at the in-

dicated sizes for the convective rain over 1–120min. The co-

incidence of the smallest sizes with the larger size suggests

a possible role of drop breakup in the generation of the smaller

drops as discussed in the text.
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due to the recent breakup of large drops (Montero-

Martínez et al. 2009; Larsen et al. 2014).

To explore further, the number of counts per minute

are plotted as a function of time and separation distance

for the convective rain for drop sizes of 3.25- (Fig. 8a)

and 0.625-mm diameters (Fig. 8b). In both cases where

rain exists, spatial variability (clustering) dominates

(also as implied by SPCF), not temporal variability (as

also reflected in the small values of CIC). That is, one

picks a time—say, 22 min—where most of the variability

is in the vertical direction (spatial) with less variability

between 20 and 40min in neighboring times (horizon-

tal). Moreover, there is a considerable degree of overlap

of the features in these two plots so that where there are

maxima in the large drops, there tend to be maxima in

the small drops, for example. In fact, the normalized 2D

cross-correlation coefficient (Haralick and Shapiro

1992, 316–317) between the two data fields is 0.964.

While this does not prove that many of the small drops

are created by the breakup of larger drops, these fea-

tures strongly contrast with the stratiform data as illus-

trated in Fig. 9.

Although the variability for the large drops persists

(likely because embedded pockets of convective rain

passed through the stratiform rain), the opposite is true

for the smaller drops (Fig. 9b) for which the variability is

largely but not exclusively more along the temporal

FIG. 8. Contour plots of the counts at a large and a small drop size

as a function of time and spatial separation along arm 3 suggesting

that the spatial variability dominates at both sizes as discussed in

the text.

FIG. 9. Contour plots of the counts at a large and a small drop size

as a function of time and spatial separation along arm 3, suggesting

that the large size is dominated by spatial variability while the small

size is dominated by temporal variability as discussed in the text.
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direction. Consequently, the normalized 2D cross-

correlation coefficient between the two data fields

(Figs. 9a and 9b) is only about 20.106. That is, the

two data fields are statistically independent in the

case of stratiform rain because of the different roles

played by spatial and temporal clustering at these two

drop sizes.

To look at all the different drop sizes, the fractional

contributions of SPCFC to the sum of SPCFC and CIC

(both averaged over the same detectors) are plotted in

Fig. 10 as a function of drop size for the two sets of data.

Clearly, at all drop sizes, the spatial clustering pre-

dominates in the convective rain while it only pre-

dominates at the very largest sizes in themore stratiform

case. This latter observation and the fact that such large

drops are found at all probably suggests that small

convective elements occasionally passed through the

background of stratiform rain.

These two sets of observations illustrate the differ-

ences between the relevance of CIC and of SPCF for the

different drop sizes in different kinds of rain. For the

large drops the variability largely remains spatial so that

SPCFC more accurately reflects the relevant clustering;

or, to put it another way, large drops tend to come more

in spatial bunches than in temporal bunches. On the

other hand, for the small drops, temporal variations

dominate in the stratiform rain so that spatial variability

is not as important; that is, the clustering is more in time

than in space (Fig. 9b). The important point is that in

general, an adequate description of drop clustering and

rain patches requires not just temporal observations but

also spatial observations and one is not equivalent to the

other. A simple advection velocity transformation be-

tween the spatial and temporal variability (clustering)

seems highly unlikely particularly over all the different

drop sizes.

These examples show that even simple rain events can

possess complex characteristics. One anticipates, then,

that most natural rain will consist of these two compo-

nents to varying degrees at different times and locations.

This is illustrated next.

b. Second example

This is the analysis of a case of light rain with the oc-

casional embedded heavier rain collected beginning at

1747 UTC 26 December 2013. This example represents

a mixture of the two previous cases. As the rain-rate

profile indicates (Fig. 11), there was a background of

light rain (around 1mmh21) with a few short bursts of

heavier rain of up to 7mmh21. The effect of these short

bursts is reflected in the total accumulated rainfall over

the 80-min rain event (Fig. 12), where the field is very

uniform with the exception of a local maximum in the

upper-left corner. Only the closest 30m from detector A

are shown to highlight what structure was evident in an

otherwise very uniform field. Nevertheless, the differ-

ence between the maximum and the minimum total

rainfall, while only 0.6mm, is still 34% of the mean

value.

An inspection of the fractional contribution to the

rainfall rate (Fig. 13) with respect to drop size reveals

three peaks. The first two are less than and approaching

FIG. 10. Plots of the fractional contribution that the spatial

clustering makes to the sum of spatial and temporal clustering in-

dices in the more convective rain (solid) and the more stratiform

rain (dotted–dashed) as discussed further in the text.

FIG. 11. Time profile of the network-average rainfall rate.
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1-mm diameter, respectively, accounting for a little

more than 80% of the rainfall rate. The third is found

around 2.25mmwith drops larger than 2mm accounting

for only 10% of the rainfall rate. This certainly suggests

a combination of stratiform (a lot of smaller drops) that

account for most of the rain rate and some convective

rain (large drops), which appear to account for about

10% of the rain rate.

A comparison between CIC (Fig. 14a) and SPCF

(Fig. 14b) shows that the small drops are clustered in

FIG. 12. Total accumulated rainfall in the closest 30m to the origin.

FIG. 13. The fractional contribution to the rainfall rate by the different drop diameters and its

accumulated value (Spdf) for detectors within 30m of disdrometer A.
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time while the larger drops are clustered in space.

Specifically,with the exceptionof the smallest drop size bin,

Fig. 15 shows that temporal clustering dominates for sizes

less than about 0.8mm. For diameters greater than 1mm,

the spatial clustering dominates by at least 2:1. As before,

CIC and SPCFC are averaged over the same detectors.

It is not surprising, then, that the plots of SPCF in

time and separation distance are also different be-

tween the small and large sizes as illustrated in Fig. 16.

This particular rain event apparently consisted of

a precipitation event of small drops mostly correlated

in time and another component of larger drops mostly

correlated in space. This is, then, more like a combi-

nation of the two previous examples also reflected in

the normalized 2D cross-correlation coefficient of

0.396 between Figs. 16a and 16b. This value is larger

than in the more stratiform case, but it is smaller than

in the more convective rain analyzed previously. The

structure of rainfall, therefore, can best be un-

derstood by simultaneously considering both the

temporal and the spatial correlation functions, which,

as we have seen, also depend upon the sizes of the

drops.

Aside from these conclusions, differences between the

spatial and temporal characteristics show up in other

ways as well, as discussed next.

c. On the relation between R and Nt

As discussed previously, in statistically homogeneous

rain, it is known that R } Nt because the expected value

of R is exactly proportional to the expected value of

Nt times the expected value of D3Vt (Jameson and

Kostinski 2001b; Steiner et al. 2004), where Vt(D) is the

terminal fall speed of drop of diameterD. SinceVt(D) is

a function of drop diameter, the expected value ofD3Vt

obviously depends on the frequency distribution of drop

sizes P(D), so, in that sense, this relation is a weighted

FIG. 14. Plots of (a) CIC and (b) SPCF for these data. Fluctua-

tions around the mean curve approximately indicate the level of

uncertainty. Some 61s uncertainty bars at a few selected separa-

tions have been added for the largest drop sizes to give a feel for

some of the largest sampling uncertainties. At the largest sizes, the

uncertainty is greater than in Fig. 6 because of the shorter sample

period and greater scarcity of the largest drops (m near unity). Note

that in (b) as the average number of drop counts per minute

per instrument decreases from an average of 4min21 (1.625mm)

down to 1min21 (2.25mm), the sampling uncertainty increases

substantially.

FIG. 15. Fractional contribution of the spatial clustering to the

sum of spatial and temporal clustering indices as a function of

drop size.
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proxy for P(D). For statistically heterogeneous rain,

however, there is no theoretical reason to expect

a linear relation between R and Nt because P(D) po-

tentially changes with each new observation until the

measurements cease. However, in previous work,

Jameson (2014) demonstrated using one disdrometer

that even in statistically heterogeneous conditions,

temporal measurements of the rainfall rate and the

total number of drops in a unit volume Nt are highly

correlated and essentially linearly related. By contrast,

R is poorly correlated with a different characteristic

parameter of P(D)—namely the mean drop size (the

inverse of the slope of an exponential size distribu-

tion). These same results appear here in the 19

detectors’ 440 temporal observations as well (Fig. 17).

This is in strong contrast with conventional wisdom,

which links changes in the rainfall rate to changes in

the P(D) (see Marshall and Palmer 1948, Sekhon and

Srivastava 1971, and many others), which, in turn,

imply power law relations between R and Nt as illus-

trated in Fig. 18. This suggests that it is reasonable to

question the validity of drop size distribution power-

law relations that do not satisfy a linear relation be-

tween R and Nt. It also suggests that heterogeneous

rain can be considered as an ensemble of homogeneous

rain occurrences (Jameson and Kostinski 2001b) each

with its own linear R–Nt relation because in such

a combination, linearity is preserved although the

scatter increases. Thus, once again we see that power-

law relations for statistically heterogeneous rain are

only statistical fits, not physically meaningful relations

among variables (Jameson and Kostinski 2001b).

Apparently, a linear relation between R and Nt arises

in statistically heterogeneous rain because once the

observations stop, there remains an average D3Vt that

implies an associated average P(D) such that R } Nt. In

that sense, different R } Nt relations imply different

average P(D). However, rather than being exact as in

the statistically homogeneous case, there can be signif-

icant scatter around the net R–Nt relation for hetero-

geneous rain because P(D) changes during the

observations and the results then depend upon when the

measurements cease.

FIG. 16. Separation-time contour plots for (a) the large drop and

(b) the small drop counts as discussed in the text.

FIG. 17. Scatterplots of R vs Nt and vs D at all the disdrometers

for every minute showing the strong correlation between Nt and R

as compared to the lack of correlation with D.
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Using the same argument as above, one might then

expect a similar R–Nt relation between the spatial av-

erages over a network as indeed appears in Fig. 18. But

will it be the same relation as that for a single instrument

temporal average? In general, the answer is ‘‘no’’ as il-

lustrated in Fig. 19. While the relation for network av-

erages exists with a substantial correlation, the temporal

relations for individual detectors can vary considerably

both among themselves (i.e., depending upon location)

and from the relation for spatial averages. That is, the

average P(D) values are not the same. Hence, in gen-

eral, temporal- and spatial-average P(D) cannot be

considered to be equivalent nor will their variability be

identical. While this result may seem trivial, this repre-

sents a direct confirmation of the often-neglected dif-

ference between temporal and spatial averaging and the

danger of oversubscribing to the advection velocity

transformation. What is happening even over this small

area and even over 7 h is not necessarily well repre-

sented by measurements using a single instrument as

Fig. 19 shows.

4. Summary

In this study, preliminary observations using a new

network of 19 optical disdrometers are analyzed in

both time and space for both convective and stratiform

rain. Although this study cannot be considered

complete in any sense, these data have already

revealed a few interesting phenomena. One of the

most important is the clarification of the different roles

that space and time play in rainfall variability. That is,

even over 900m2, there is significant remnant spatial

variability even after up to 440min of rain particularly

in more convective rain. In the one example of the

most convective rain with peak rainfall rates ap-

proaching 250mmh21, the residual spatial variability

is dominated by spatial clustering over all the drops,

but its importance increases as the drop size increases

for D . 1mm until it exceeds 90% of the total vari-

ability forD. 2mm. This contrasts markedly with the

more stratiform rain example in which the temporal

clustering dominates exclusively over all sizes except

for the very largest drops observed havingD. 2.5mm,

most likely associated with weak convective elements

passing through the background of the more stratiform

rain.

In another example, there is amixture of the two types

of rainfall—that is, a background of smaller drops,

spatially more uniform but embedding spatially clus-

tered drops of sizes larger than 1-mm size occasionally

passing through the background rain.

What this points out is that there can be both temporal

and spatial clustering each differently affecting drops of

different sizes. Thus, there is no equivalency between

spatial and temporal clustering. Both are important at

different times and at different locations depending on

the drop size and the meteorology.

FIG. 18. Network-1-min-averageR vs network-averageNt for the

entire 1–440min. The red line is the relation derived based upon

the radar study of Sekhon and Srivastava (1971) showing the effects

of small-drop truncation by the radar. The green line is the power-

law fit corresponding to the Marshall and Palmer (1948) distribu-

tions. The poor performance of power laws is discussed in the text.

FIG. 19. A plot of the network-spatial-averageNt andR as well as

plots of the time series for Nt and R for two individual optical

disdrometers highlighting the differences between spatial and

temporal relations that can occur.
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In addition, an attempt was made to find a simple

advection velocity transformation between CI and

SPCF. CIs are well fit by decreasing exponential func-

tions. On the other hand, SPCFs can be fit using a wide

variety of nonexponential as well as exponential func-

tions. However, these latter exponentials are not simple

decreasing exponentials like those for CI, but, rather,

are decreasing stretched exponential functions of vary-

ing powers of separation distances. This suggests that

there is no simple linear advection velocity trans-

formation between CIs and SPCFs, at least for these

data. However, the fits to SPCFs are all uncertain (r 5
0.10) so that more data must be analyzed for a more

convincing conclusion in the future.

While there remains a wide variety of other prob-

lems to be addressed in future research, one example

points to the advantage of having a number of in-

struments sampling over the modest area of 10 000m2.

For spatial and temporal variability even over such

small domains, the data can be combined to explore

network-wide characteristics of the rain. Specifically,

just as for time series measurements by a single dis-

drometers, a network of disdrometers also reveals

a linear relation between R and Nt for the 1-min

network-average values. This is in strong contrast

with conventional wisdom, which links changes in the

rainfall rate to changes in P(D), which, in turn, imply

power-law relations between R and Nt rather than the

linear relations that we observe. Moreover, the net-

work relation differs from those for time series ob-

servations by individual instruments. Because R and

Nt are connected by P(D) expected or average

weighted moment (D3Vt), where Vt is the terminal

fall speed of drop of diameter D, this then implies

that, in general, temporal- and spatial-average P(D)

values are not equivalent. While this result may seem

trivial, this finding and the other results presented

above represent a direct confirmation of the often-

neglected differences between temporal and spatial

averages and the overuse of the advection velocity

transformation.
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APPENDIX

A Description of the College of Charleston
Disdrometer Network

The network consists of 21 Thies laser precipitation

monitors (LPMs), in conjunction with a Joanneum

compact two-dimensional video disdrometer (2DVD).

The array is located at historic ‘‘Dixie Plantation’’ near

Hollywood, South Carolina; this property (owned by the

College of Charleston Foundation) is used for a variety

of ecological, educational, and research purposes. The

site is located at 3284402600N, 8081003600W. The general

structure of the array can be seen schematically in

Fig. A1, satellite imagery of the currently completed

array is shown in Fig. A2, and a photograph of part of the

array is shown in Fig. A3.

The instrument layout shown in Fig. A1 was designed

to develop a dense network with distinct spatial sepa-

rations. This layout contrasts with the usual grid setup,

which collects a lot of information at only one particular

separation distance but then abandons information on

many other scales. By using logarithmic spacing, how-

ever, spatial scales from approximately 1 to 100m can be

explored simultaneously. With the addition of the

compact 2DVD (which is capable of resolving spatial

information smaller than 1mm), this array then allows

us to investigate rainfall spatial variability through five

orders of magnitude, most of which have not been

FIG. A1. A schematic of the layout of the LPM (optical dis-

drometers) network with the letters referencing specific in-

struments as further discussed in the text. The 2DVD is indicated

by the box. The origin of the network is taken to be at detector A in

the upper-left corner. Arms refer to specific linear arrays of in-

struments as referenced in the text at times.
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extensively explored in past studies. Because of the

logarithmic spacing the 21 LPMs allow for 66 distinct

interdetector distances, allowing for reasonably dense

resolution of spatial correlation functions as shown in

the main text.

Figure A2 shows two views of the array site, taken

from satellite imagery gathered on 1 March 2014.

Figure A2a provides an overview not only of the full

array but also of the surrounding tree cover and the lo-

cation of the building with the data acquisition com-

puters. The origin of the array was chosen far enough

away from the tree cover to ensure no rain that should

be detected hits the surrounding trees. The data is

transmitted through cables back to the building with the

red roof in the lower-left-hand corner of the image.

The more-zoomed image of the site (Fig. A2b) shows

the individual detectors arm 3 runs from left to right

across the top of the image. One can also see an addi-

tional post several meters to the left of the array origin

and a data junction box about halfway between the ex-

tra post and the array origin. The 2DVD (installed in

December) is the white spot between arms 2 and 3 near

the origin of the array. The roughly circular patch

between the ends of arms 2 and 3 contains a Davis

VantagePro 2 weather station with a tipping-bucket

rain gauge (not used in this study).

FIG. A2. (a) A Google Earth overview of the network and (b) a closer view of the layout of

the disdrometers. Shadows extend from the optical disdrometers with letters denoting the

detectors farthest from the origin along each arm.
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FigureA3 is a photograph of the area near the network

origin. Each LPM is mounted approximately 5 ft (1.5m)

above the ground on a 10-ft (3.0m) pole [sunk 4 ft (1.2m)

into the ground]. The power for each detector comes

from power supplies in the data acquisition building.

Construction of the network was begun in May 2013.

Each LPM was calibrated in a separate indoor labora-

tory and moved to the field site. Instruments came

online during the interval between September and De-

cember 2013, with the 2DVD being the last-installed

piece in mid-December 2013. This study uses data taken

by 19 operational LPMs during the instrument de-

ployment stage. (LPMs L and M had glitches in the

wiring that were not rectified until early December.)

The Thies LPM instruments were characterized in

detail by Frasson et al. (2011) and have been used in

a number of other studies including Brawn and Upton

(2008) and Fernández-Raga et al. (2009, 2010). Optical

disdrometers are well recognized as useful tools for

characterizing drop size distributions (e.g., Löffler-
Mang and Yuter 2002; Tokay et al. 2001). The in-

struments are infrared occlusion instruments that can be

run in several separate modes. For this study, the in-

struments were run in their default mode, associated

with 1-min integrations; in this mode, the device reports

a spectrum each minute indicating how many droplets

were detected in each of 22 disjoint drop size bins and 20

disjoint velocity bins (thus, each drop is characterized as

belonging to 1 of 440 different categories). These in-

struments do not appear in the literature as often as

some other optical or impact disdrometers, but they

were utilized in the construction of this array because

they were among the most affordable devices for re-

solving 1-min raindrop size spectra. The known issues

associated with particle sizing were mitigated to the

greatest degree possible by verifying consistent perfor-

mance in the laboratory before deployment and using

identical instruments throughout the array. Moreover,

measurements by all of the instruments were compared

to minimize the inclusion of questionable behavior.

The devices are naturally synchronized; all devices

were turned on simultaneously since they are run with

the same power supply. Although these devices are

intended to be very low maintenance, the acquisition of

data is reset every week to ensure minimal temporal

drift; empirical estimation from this process suggests

a relative shift of less than 1 sweek21 among all de-

tectors. During the weekly maintenance activity, the

devices are confirmed to be level, free of debris/insects,

and recording properly.

REFERENCES

Anderson, A., and A. Kostinski, 2010: Reversible record braking and

variability: Temperature distributions across the globe. J. Appl.

Meteor. Climatol., 49, 1681–1691, doi:10.1175/2010JAMC2407.1.

FIG. A3. A photograph of the layout of the LPM (optical disdrometers) network. The origin

of the network is taken to be at detector A indicated at the left. Arm 3 is the leftmost line of

detectors. The white box is the 2DVD toward the left of center.

1664 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 72

http://dx.doi.org/10.1175/2010JAMC2407.1


Baker, B., and R. P. Lawson, 2010: Analysis of tools used to

quantify droplet clustering in clouds. J. Atmos. Sci., 67, 3355–

3367, doi:10.1175/2010JAS3409.1.

Brawn, D., and G. Upton, 2008: On the measurement of atmo-

spheric gamma drop-size distributions. Atmos. Sci. Lett., 9,

245–247, doi:10.1002/asl.198.

Caracciolo, C., M. Napoli, F. Porcu, F. Prodi, S. Dietrich,

C. Zanchi, and S. Orlandini, 2012: Raindrop size distribu-

tion and soil erosion. J. Irrig. Drain. Eng., 138, 461–469,

doi:10.1061/(ASCE)IR.1943-4774.0000412.

Chaumat, L., and J. L. Brenguier, 2001: Droplet spectra broaden-

ing in cumulus clouds. Part II: Microscale droplet concentra-

tion heterogeneities. J. Atmos. Sci., 58, 642–654, doi:10.1175/

1520-0469(2001)058,0642:DSBICC.2.0.CO;2.

Fernández-Raga, M., A. Castro, C. Palencia, A. Calvo, and

R. Fraile, 2009: Rain events on 22October 2006 in León (Spain):
Drop size spectra. Atmos. Res., 93, 619–635, doi:10.1016/

j.atmosres.2008.09.035.

——, and Coauthors, 2010: The kinetic energy of rain measured

with an optical disdrometer: An application to splash erosion.

Atmos. Res., 96, 225–240, doi:10.1016/j.atmosres.2009.07.013.

Frasson, R. P. M., L. K. da Cunha, and W. F. Krajewski, 2011:

Assessment of the Thies optical disdrometer performance.

Atmos. Res., 101, 237–255, doi:10.1016/j.atmosres.2011.02.014.

Green, H. S., 1969: TheMolecular Theory of Fluids.Dover, 737 pp.

Haralick, R. M., and L. G. Shapiro, 1992: Computer and Robot

Vision. Vol. II. Addison-Wesley, 630 pp.

Jaffrain, J., and A. Berne, 2012: Quantification of the small-scale

spatial structure of the raindrop size distribution from a net-

work of disdrometers. J. Appl. Meteor. Climatol., 51, 941–953,

doi:10.1175/JAMC-D-11-0136.1.

——, A. Studzinski, and A. Berne, 2011: A network of dis-

drometers to quantify the small-scale variability of the rain-

drop size distribution. Water Resour. Res., 47, W00H06,

doi:10.1029/2010WR009872.

Jameson, A. R., 2008: Radar observations of rainfall variability

using non-Rayleigh signal fluctuations. J. Appl. Meteor. Cli-

matol., 47, 607–619, doi:10.1175/2007JAMC1630.1.

——, 2014: A Bayesian method for upsizing disdrometer drop size

counts for rain physics studies and areal applications. IEEE

Trans. Geosci. Remote Sens., 53, 335–343, doi:10.1109/

TGRS.2014.2322092.

——, and A. B. Kostinski, 1996: Non-Rayleigh signal statistics

caused by relative motion during measurement. J. Appl. Me-

teor., 35, 1846–1859, doi:10.1175/1520-0450(1996)035,1846:

NRSSCB.2.0.CO;2.

——, and——, 1999: Fluctuation properties of precipitation. PartV:

Distribution of rain rates—Theory and observations

in clustered rain. J. Atmos. Sci., 56, 3920–3932, doi:10.1175/

1520-0469(1999)056,3920:FPOPPV.2.0.CO;2.

——, and ——, 2000: Fluctuation properties of precipitation.

Part VI: Observations of hyper-fine clustering and drop size

distribution structures in three-dimensional rain. J. Atmos.

Sci., 57, 373–388, doi:10.1175/1520-0469(2000)057,0373:

FPOPPV.2.0.CO;2.

——, and ——, 2001a: What is a raindrop size distribution?

Bull. Amer. Meteor. Soc., 82, 1169–1177, doi:10.1175/

1520-0477(2001)082,1169:WIARSD.2.3.CO;2.

——, and ——, 2001b: Reconsideration of the physical and em-

pirical origins of Z–R relations in radar meteorology. Quart.

J. Roy. Meteor. Soc., 127, 517–538, doi:10.1002/qj.49712757214.

——, and——, 2002:When is rain steady? J. Appl. Meteor., 41, 83–

90, doi:10.1175/1520-0450(2002)041,0083:WIRS.2.0.CO;2.

——, and ——, 2008: The effect of clustering on the uncertainty of

differential reflectivity measurements. J. Appl. Meteor. Cli-

matol., 47, 2816–2827, doi:10.1175/2008JAMC1860.1.

——, and ——, 2010: Partially coherent backscatter in radar

observations of precipitation. J. Atmos. Sci., 67, 1928–1946,

doi:10.1175/2010JAS3336.1.

Kinnell, P. I. A., 2005: Raindrop-impact-induced erosion processes

and prediction: A review. Hydrol. Processes, 19, 2815–2844,

doi:10.1002/hyp.5788.

Kostinski, A. B., and A. R. Jameson, 1997: Fluctuation properties

of precipitation. Part I: On deviations of single-size counts

from the Poisson distribution. J. Atmos. Sci., 54, 2174–2186,

doi:10.1175/1520-0469(1997)054,2174:FPOPPI.2.0.CO;2.

——, and ——, 2000: On the spatial distribution of cloud particles.

J.Atmos. Sci., 57, 901–915, doi:10.1175/1520-0469(2000)057,0901:

OTSDOC.2.0.CO;2.

——, M. L. Larsen, and A. R. Jameson, 2006: The texture of rain:

Exploring stochastic micro-structure at small scales. J. Hy-

drol., 328, 38–45, doi:10.1016/j.jhydrol.2005.11.035.

Koutsoyiannis, D., 2006: An entropic-stochastic representation of

rainfall intermittency: The origin of clustering and persistence.

Water Resour. Res., 42, W01401, doi:10.1029/2005WR004175.

Krajewski, W. F., G. J. Ciach, and E. Habib, 2003: An analysis of

small-scale rainfall variability in different climatic regimes.

Hydrol. Sci. J., 48, 151–162, doi:10.1623/hysj.48.2.151.44694.

Kundu, P. K., and J. E. Travis, 2013: A stochastic fractional dy-

namics model of space-time variability of rain. J. Geophys.

Res. Atmos., 118, 102277–10 295, doi:10.1002/jgrd.50723.

Landau, L.D., andE.M.Lifshitz, 1980:Statistical Physics.Pergamon

Press, 687 pp.

Larsen, M. L., 2012: Scale localization of cloud particle clus-

tering statistics. J. Atmos. Sci., 69, 3277–3289, doi:10.1175/

JAS-D-12-02.1.

——, A. Clark, M. Noffke, G. Saltzgaber, and A. Steele, 2010:

Identifying the scaling properties of rainfall accumulation as

measured by a rain gage network. Atmos. Res., 96, 149–158,

doi:10.1016/j.atmosres.2009.12.008.

——, A. B. Kostinski, and A. R. Jameson, 2014: Evidence sup-

porting the existence of superterminal raindrops. Geophys.

Res. Lett., 41, 6914–6918, doi:10.1002/2014GL061397.

Li, B., A. Murthi, K. P. Bowman, G. R. North, M. G. Genton, and

M. Sherman, 2009: Statistical tests of Taylor’s hypothesis: An

application to precipitation fields. J. Hydrometeor., 10, 254–

265, doi:10.1175/2008JHM1009.1.

Löffler-Mang, M., and S. Yuter, 2002: Particle type, velocity,

and size distribution measurements with the PARSIVEL

optical disdrometer. Proc. GPM Workshop, Seattle, WA,

NASA, 23–25.

Marshall, J. S., and W. M. Palmer, 1948: The distributions

of raindrops with size. J. Meteor., 5, 165–166, doi:10.1175/

1520-0469(1948)005,0165:TDORWS.2.0.CO;2.

Molini, A., G. Katul, and A. Porporato, 2009: Revisiting rain-

fall clustering and intermittency across different climatic

regimes. Water Resour. Res., 45, W11403, doi:10.1029/

2008WR007352.

Montero-Martínez, G., A. B. Kostinski, R. A. Shaw, and F. García-
García, 2009: Do all raindrops fall at terminal speed? Geo-

phys. Res. Lett., 36, L11818, doi:10.1029/2008GL037111.

Mood, A. M., F. A. Graybill, and D. C. Boes, 1974: Introduction to

the Theory of Statistics. 3rd ed. McGraw-Hill, 564 pp.

Ornstein, L., and F. Zernike, 1914: Accidental deviations of density

and opalescence at the critical point of a single substance.

Proc. Roy. Neth. Acad. Arts Sci., 17, 793–806.

APRIL 2015 JAMESON ET AL . 1665

http://dx.doi.org/10.1175/2010JAS3409.1
http://dx.doi.org/10.1002/asl.198
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000412
http://dx.doi.org/10.1175/1520-0469(2001)058<0642:DSBICC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2001)058<0642:DSBICC>2.0.CO;2
http://dx.doi.org/10.1016/j.atmosres.2008.09.035
http://dx.doi.org/10.1016/j.atmosres.2008.09.035
http://dx.doi.org/10.1016/j.atmosres.2009.07.013
http://dx.doi.org/10.1016/j.atmosres.2011.02.014
http://dx.doi.org/10.1175/JAMC-D-11-0136.1
http://dx.doi.org/10.1029/2010WR009872
http://dx.doi.org/10.1175/2007JAMC1630.1
http://dx.doi.org/10.1109/TGRS.2014.2322092
http://dx.doi.org/10.1109/TGRS.2014.2322092
http://dx.doi.org/10.1175/1520-0450(1996)035<1846:NRSSCB>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1996)035<1846:NRSSCB>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1999)056<3920:FPOPPV>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1999)056<3920:FPOPPV>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2000)057<0373:FPOPPV>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2000)057<0373:FPOPPV>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(2001)082<1169:WIARSD>2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2001)082<1169:WIARSD>2.3.CO;2
http://dx.doi.org/10.1002/qj.49712757214
http://dx.doi.org/10.1175/1520-0450(2002)041<0083:WIRS>2.0.CO;2
http://dx.doi.org/10.1175/2008JAMC1860.1
http://dx.doi.org/10.1175/2010JAS3336.1
http://dx.doi.org/10.1002/hyp.5788
http://dx.doi.org/10.1175/1520-0469(1997)054<2174:FPOPPI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2000)057<0901:OTSDOC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2000)057<0901:OTSDOC>2.0.CO;2
http://dx.doi.org/10.1016/j.jhydrol.2005.11.035
http://dx.doi.org/10.1029/2005WR004175
http://dx.doi.org/10.1623/hysj.48.2.151.44694
http://dx.doi.org/10.1002/jgrd.50723
http://dx.doi.org/10.1175/JAS-D-12-02.1
http://dx.doi.org/10.1175/JAS-D-12-02.1
http://dx.doi.org/10.1016/j.atmosres.2009.12.008
http://dx.doi.org/10.1002/2014GL061397
http://dx.doi.org/10.1175/2008JHM1009.1
http://dx.doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
http://dx.doi.org/10.1029/2008WR007352
http://dx.doi.org/10.1029/2008WR007352
http://dx.doi.org/10.1029/2008GL037111


Peebles, P. J. E., 1993:Principles of Physical Cosmology. Princeton

University Press, 709 pp.

Pimentel, D., and Coauthors, 1995: Environmental and economic

costs of soil erosion and conservation benefits. Science, 267,
1117–1123, doi:10.1126/science.267.5201.1117.

Sekhon,R. S., andR.C. Srivastava, 1971:Doppler radar observations of

drop-size distributions in a thunderstorm. J. Atmos. Sci., 28, 983–

994, doi:10.1175/1520-0469(1971)028,0983:DROODS.2.0.CO;2.

Smith, J. A., E. Hui, M. Steiner, M. L. Baeck, W. F. Krajewski, and

A. A. Ntelekos, 2009: Variability of rainfall rate and raindrop

size distributions in heavy rain. Water Resour. Res., 45,

W04430, doi:10.1029/2008WR006840.

Steiner, M., J. A. Smith, and R. Uijlenhoet, 2004: A microphysical

interpretationof radar reflectivity–rain rate relationships. J.Atmos.

Sci., 61, 1114–1131, doi:10.1175/1520-0469(2004)061,1114:

AMIORR.2.0.CO;2.

Tokay, A., and P. G. Bashor, 2010: An experimental study of

small-scale variability of raindrop size distribution.

J. Appl. Meteor. Climatol., 49, 2348–2365, doi:10.1175/

2010JAMC2269.1.

——, A. Kruger, and W. F. Krajewski, 2001: Comparison of

drop size distribution measurements by impact and optical

disdrometers. J. Appl. Meteor., 40, 2083–2097, doi:10.1175/

1520-0450(2001)040,2083:CODSDM.2.0.CO;2.

——, P. G. Bashor, and K. R. Wolff, 2005: Error characteristics of

rainfall measurements by co-located Joss-Waldvogel dis-

drometers. J. Tech., 22, 513–527.

Uri, N. D., and J. A. Lewis, 1999: Agriculture and the dynamics of

soil erosion in the United States. J. Sustainable Agric., 14, 63–

82, doi:10.1300/J064v14n02_07.

Watson, D. F., 1994: NNGRIDR: An Implementation of Natural

Neighbor Interpolation. David Watson, 170 pp.

1666 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 72

http://dx.doi.org/10.1126/science.267.5201.1117
http://dx.doi.org/10.1175/1520-0469(1971)028<0983:DROODS>2.0.CO;2
http://dx.doi.org/10.1029/2008WR006840
http://dx.doi.org/10.1175/1520-0469(2004)061<1114:AMIORR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2004)061<1114:AMIORR>2.0.CO;2
http://dx.doi.org/10.1175/2010JAMC2269.1
http://dx.doi.org/10.1175/2010JAMC2269.1
http://dx.doi.org/10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2
http://dx.doi.org/10.1300/J064v14n02_07

	Disdrometer network observations of finescale spatial–temporal clustering in rain
	Recommended Citation

	jasD140136 1648..1666

