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ABSTRACT

Past studies of the variability of drop size distributions (DSDs) have used moments of the distribution such

as the mass-weighted mean drop size as proxies for the entire size distribution. In this study, however, the

authors separate the total number of dropsNt from theDSD leaving the probability size distributions (PSDs);

that is, DSD5Nt3 PSD. The variability of the PSDs are then considered using the frequencies of size [P(D)]

values at each different drop diameter P(PD jD) over an ensemble of observations collected using a network

of 21 optical disdrometers. The relative dispersions RD of P(PD jD) over all the drop diameters are used as

a measure of PSD variability. An intrinsic PSD is defined as an average over one or more instruments ex-

cluding zero drop counts. It is found that variability associated with an intrinsic PSD fails to characterize its

true variability over an area. It is also shown that this variability is not due to sampling limitations but rather

originates for physical reasons. Furthermore, this variability increases with the expansion of the network size

and with increasing drop diameter.

A physical explanation is that the network acts to integrate the Fourier transform of the spatial correlation

function from smaller toward larger wavelengths as the network size increases so that the contributions to the

variance by all spatial wavelengths being sampled also increases. Consequently, RD and, hence, PSD vari-

ability will increase as the size of the area increases.

1. Introduction

Ever since the first reports of the frequency distribu-

tion of drops of various sizes [i.e., drop size distributions

(DSDs)] (Laws and Parsons 1943; Marshall and Palmer

1948; Best 1950), there has been a growing appreciation

of their variability particularly with regard to different

meteorological conditions. For decades, a great deal of

effort has been spent characterizing DSDs of all kinds,

so much so that there are now hundreds and possibly

thousands of expressions. Moreover, to a large extent,

the appearance of the field of radarmeteorology arose in

response to DSDs because the integral properties of the

radar reflectivity factorZ and the rainfall rateR could be

directly connected, thus making radar a potentially

practical instrument for rapidly measuring rain over

large areas. While this potential is still being explored

today, the variability of the DSDs not only has led to

a vast family of Z–R relations, but the DSDs have also

produced families of parameterizations that relate the

variables of the DSDs to their integral properties. Un-

fortunately, such parameterizations, by their very na-

ture, tend to minimize a full appreciation of the true

variability of the underlying DSDs.

This is not to say that such variability is not appreci-

ated particularly as it impacts radar reflectivity factor,

beginning withWexler (1948) and Jones (1956) up to the

present (e.g., Islam et al. 2012a,c), and rainfall spatial

distributions (e.g., Lee and Zawadzki 2005; Lee et al.2009;

Tokay and Bashor 2010; Jaffrain and Berne 2012a). These
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past studies, however, only use variability of the moments

of a size distribution as a proxy for the variability of the

entirety of the DSDs themselves.

Furthermore, more recently Jaffrain and Berne (2012b)

have proposed a decreasing stretched exponential func-

tion to describe the spatial correlation forDSD integrated

parameters for detector separations greater than 100m.

What this means with regard to the high temporal and

spatial resolution of the DSDs themselves is not clear,

however. As important as such studies are for many

practical purposes, so far no one has considered looking

directly at the variability of the DSDs at each drop size on

scales less than 100m as we do in this study.

As just mentioned, DSD variability has often been

evaluated using integrated quantities such as the mean

diameter. This is inadequate, however. Integrated vari-

ables depend not only on the form of the DSD but also

on the limits of the integration. Thus, the same value of

the integrated variable can be produced by a wide va-

riety of different DSDs. Consequently, the variability of

integrated quantities fails to capture the total variability

of the DSDs. So what do we mean here by DSD vari-

ability? Normally, one has access to time series mea-

surements using a single instrument, and normally

elements of the time series are averaged to reduce

fluctuations arising as a result of a variable number of

drops at all different sizes. Hence, there is variability due

to sampling and that due to real physics. We will show

below that it is the latter that dominates over a network.

Specifically, a drop size distribution can be described

as the product of the total number of drops Nt times

the frequency distribution of drops with size P(D) as

argued in Kostinski and Jameson (1999); that is,

N(D)dD5NtP(D)dD, whereP(D)dD is the probability

of finding a drop size between D and D 1 dD. That is,

DSD 5 Nt 3 PSD, where PSD 5 P(D). While Nt plays

a critical role in the variability of the rainfall rate and

other quantities (e.g., Jameson and Kostinski 2001;

Jameson 2015; Jameson et al. 2015), the focus here is on

the variability in the frequencies of different sizes of

drops—that is, on the variability of P(D). Specifically,

one takes the observed drop counts at the different size

bins using a disdrometer, whether impact or optical, and

normalizes the count at each drop size byNt to yield the

estimate of P(D), the frequency or probability distri-

bution of drop sizes. From observation to observation,

P(D)5 PD varies at eachD. We then have a probability

distribution of the different values of PSD at each D

denoted by P(PD jD). Thus, the variability of the PSD is

equivalent to the variability of P(D) at each size over all

sizes over an ensemble of measurements. Hence, in this

work, when we speak of the variability of the drop size

distribution, we mean the spread or relative dispersion

in the values of P(PD jD) at all the different drop sizes

relative to their mean P(D). Later, we also provide

a measure over an entire network of instruments.

Below we describe a network of 21 optical dis-

drometers used to explore the variability of PSD. There

are two ways of looking at these data. The first is to

combine all the observations so that each instrument

contributes to a distribution of P(D) at each size. What,

then, is the average PSD regardless of the location of the

instrument? In effect, this excludes all P(D) 5 0 that

contribute no information. [For example, in the extreme

case when all P(D) 5 0, there is nothing to talk about.]

Then at each drop size, there will be an ‘‘intrinsic’’ rel-

ative dispersion of P(PD jD) reflecting the variability of

P(D) at each D excluding all zeros.

The second way of considering the data is to ask,

‘‘What is the average drop size distribution over the

area of the network each minute?’’ That is, what hap-

pens when one takes an intrinsic PSD and distributes it

spatially over an area? Now, the occurrences ofP(D)5
0 are meaningful since voids can occur within the area

encompassed by a network. Such variability impacts

the answer to that question. This distinction, while

seemingly academic, can strongly influence the

network-relative dispersions of P(PD jD) at each size

and, consequently, the potential variability of the

network-average PSD. This will be discussed further

below.

While seemingly pedantic, this distinction is impor-

tant when one wants to consider rainfall over an area

because the intrinsic P(D) alone does not fully account

for the effects of spatial variability particularly the spa-

tial voids, which may appear at different sizes at differ-

ent locations and times. Obviously, integration time will

influence but not eliminate the occurrences and loca-

tions of these voids since they are not all due to sampling

fluctuations. To provide an illustration of such spatial

variability, Fig. 1 shows the PSDs [P(D)] observed every

minute by two detectors over a 440-min rain event

consisting of both intense rain from thunderstorms and

light rain from subsequent anvil containing a few weak,

transient intense elements discussed further below.

Even though the two identical instruments are separated

by only 1.93m, the profiles of P(D) can still be signifi-

cantly different (aside from instrument differences) as

indicated in Fig. 1c and as discussed further later. These

differences (Fig. 1a) between the two PSDs were not

influenced by any statistically significant bias in Nt be-

tween these two detectors for these data (Fig. 1d).

In the next section, we describe the network in greater

detail, provide a few definitions, and establish the con-

nection between the relative dispersions of P(PD jD) at

each D and the variability in both the intrinsic and the
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network-average PSDs. Data analyses and results will

then follow.

2. Preliminary considerations

a. The network of detectors

The network consists of 21 Thies Laser Precipitation

Monitors (LPMs), in conjunction with a Joanneum

compact two-dimensional video disdrometer (2DVD).

The array is located at historic Dixie Plantation near

Hollywood, South Carolina; this property (owned by the

College of Charleston Foundation) is used for a variety

of ecological, educational, and research purposes. The

site is located at 3284402600N, 8081003600W.

The instrument layout is shown in Fig. 2 and was de-

signed to develop a dense network with distinct spatial

separations. This layout contrasts with the usual grid

setup that collects a lot of information at only one

a particular separation distance but then abandons

FIG. 1. A contour plot of log10[P(D)] over the entire 440-min rain event for two optical disdrometers in the network (see Fig. 2):

(a) optical disdrometer A and (b) optical disdrometer B, only 1.93m away from A. (c) A plot of the ratio of the two P(D) highlighting

differences between the two detectors. (d) The scatterplot between Nt for detectors A and B showing no bias.
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information on many other scales. By using logarithmic

spacing, however, spatial scales from approximately 1 to

100m can be explored simultaneously. With the addi-

tion of the compact 2DVD (which is capable of resolving

spatial locations of drops to within less than 1mm), this

array then allows us to investigate rainfall spatial vari-

ability through five orders of magnitude, most of which

have not been extensively explored in past studies.

Each LPM was calibrated in a separate indoor labo-

ratory and moved to the field site. This study uses data

taken by 19 operational LPMs (LPMs L and M had

glitches in the wiring that were not rectified until early

December).

The Thies LPM instruments were characterized in

detail by de Moraes Frasson et al. (2011) and have been

used in a number of other studies including Brawn and

Upton (2008) and Fernández-Raga et al. (2009, 2010).
Optical disdrometers are well recognized as useful tools

for characterizing drop size distributions (e.g., Löffler-
Mang and Joss 2000; Tokay et al. 2001). It is not likely

that the results presented here depend upon the type of

disdrometer (Islam et al. 2012b). The instruments are

infrared occlusion instruments that can be run in several

separate modes; for this study, the instruments were run

in their default mode associated with 1-min integrations;

in this mode, the device reports a spectrum each minute

indicating how many droplets were detected in each of

22 disjoint drop size bins and 20 disjoint velocity bins

(thus, each drop is characterized as belonging to one of

440 different categories). The known issues associated

with particle sizing weremitigated to the greatest degree

possible by verifying consistent performance in the

laboratory before deployment and using identical in-

struments throughout the array. Moreover, measure-

ments by all of the instruments were compared to

minimize the inclusion of questionable behavior.

The devices are naturally synchronized; all devices

were turned on simultaneously since they are powered

with the same power supply. Although these devices are

intended to be very low maintenance, the acquisition of

data is reset every week to ensure minimal temporal

drift; empirical estimation from this process suggests

a relative shift of less than 1 sweek21 among all de-

tectors. During the weekly maintenance activity, the

devices are confirmed to be level, free of debris/insects,

and recording properly.

The instruments are placed along three arms: two

being orthogonal and the third bisecting the right angle.

Eight instruments are spaced logarithmically out to

100m along two of the arms, but the third arm, having

seven instruments, only extends 52m. This spacing pro-

vides increasing spatial resolution toward the network

origin. One-minute drop counts over 22 size bins are re-

corded everyminute for all the instruments so thatwe can

estimate the PSDs for all the detectors every minute.

From this entire grid extending out to 100m, grids of

other sizes can be constructed as well. In this study we

consider a 2-m grid (detectors A, B, H, Q), a 4-m grid

(A, B, H, Q, C, J, R), and a 7-m grid (A, B, H, Q, C, J, R,

D, K, S) as well as the full grid containing all of the in-

struments out to 100m. Other grids can, of course, be

constructed, but because we wished to look at the

changes associated with the expansion of a network size

rather than its relocation, we have the larger grids con-

taining the smaller subgrids.

b. The effect of a network on the relative dispersion

As mentioned above, in this work the variability of

a PSD is characterized by the relative dispersion of the

distribution of P(D) at each drop size. We denote this

distribution of P(D) at each size by P(PD jD) where the

vertical bar denotes ‘‘at D.’’ In Fig. 3 we illustrate one

distribution P(PD jD) of values observed at the in-

dicated drop size (black line). In this case, there is near

full occupancy of the network since P(PD jD) at zero is

very small. That is, during the 440 one-minute obser-

vations over all 19 detectors, the average P(PD jD) at

this size was almost never close to zero. In part that is

because these small sizes are ubiquitous, but for larger,

scarcer drops, that is not necessarily true. To illustrate

amore porous rain—that is, rain with voids at that size—

we take this observed distribution and modify it to

simulate only 60% occupancy or, to put it another way,

FIG. 2. A schematic of the layout of the LPM (optical dis-

drometers) network, with the letters referencing specific in-

struments as further discussed in the text. The 2DVD is indicated

by the square. The origin of the network is taken to be at detectorA

in the upper-left corner. The arms refer to specific linear arrays of

instruments.
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40% of the time there were very few if any drops of this

size in the entire network so that the network average

was smaller than the smallest bin size of P(D) used to

compute P(PD jD). As Fig. 3 illustrates (red lines), both

themeanm and the standard deviations are alteredwith

the latter increasing and the former decreasing. Conse-

quently, the relative dispersion, RD 5 s/m, increases

with decreasing occupancy. Thus, in general for each

size, RD over a network will be larger than RDi [i.e., the

value of the relative dispersion of P(PD jD) for the in-

trinsic PSD at size D].

The results depicted in Fig. 3, however, can be ex-

pressed explicitly. Consider a network havingM detectors.

Suppose that m of these have a very small P(D) # «, and

suppose that the other (M 2 m) values have an average

P(D)5 x and P(D)2 5 x2. Then it follows that

m5
m«1 (M2m)x

M
and

X25
m«2 1 (M2m)x2

M
, (1)

where m is the mean and X2 is the average squared

value. It then follows that

R2
D 5

X2

m2
2 1

5
Mm«21M(M2m)x2

m2«21 2m«(M2m)x1 (M2m)2x2
2 1. (2)

As «/0 and defining the fraction of detectors occupied

as f 5 (M 2 m)/M,

RD 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

f
R2
Di1

12 f

f

s
, where 1/M# f # 1. (3)

Consequently, as f /1, RD / RDi. On the other hand,

as f / 1/M, its smallest value, RD/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 1

p
since for

one grid value RDi / 0 so that RD becomes only

a function of the total number of detectors. This relation

is plotted in Fig. 4 where it is clear that RD . RDi for all

f , 1.

Note that the M detectors can be distributed over an

area of any size. The effect of different sizes of areas,

then, is expressed through f, which depends on the

sparseness of the rain. As we shall see, it also depends

upon drop size so that, in reality, RD never approaches

RDi simultaneously over all the drop sizes. Because the

relative dispersion is a measure of the spread of proba-

bilities around the average P(D) at each size, this means

that it is less likely that P(D) will simultaneously be near

their mean (intrinsic) values at all D. In that sense, the

intrinsic PSD is less likely to be realized spatially over

a network so that simply using a mean PSD and its as-

sociated RDi is misleading particularly if measured by

one instrument over time.

3. Data and analyses

a. An initial observation

With these tools, we begin the analyses of a rain

event consisting of both a more intense component

and a lighter component that began at 1645:00 UTC

23 Nov 2013 (Saturday) and lasted for 440min with

maximum rainfall rates approaching 250mmh21. To

get a basic feeling for this rain event, the rainfall rate

averaged over the entire network is illustrated in

Fig. 5. Only 19 of the 21 detectors were operational

during this event (i.e., excluding detectors L and M as

shown in Fig. 2) so that this average is only over those

disdrometers. While for the most part we consider all

440min, we also analyze two selected time periods as

indicated with the red portion denoting the more in-

tense rain and the green denoting the lighter rain. Each

is 120min long.

Given the above discussion, then it should come as no

surprise that P(D) could vary considerably from minute

to minute over a network. Indeed, Fig. 6a illustrates the

differences even between neighboring detectors A and

B separated only by 1.93m as previously shown in

Fig. 1c. While the green areas denote P(D) values that

are nearly the same for the two detectors, detector A

FIG. 3. The probability distribution by P(PD jD) of P(D)

showing the observations (black) and the results had 40% of the

network been devoid of drops of this size (red). The mean m and

standard deviation s illustrate that the relative dispersion would

have increased RD 5 s/m in this latter case.
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often showed greater P(D) at the larger sizes, with the

opposite being true at the smaller diameters. This, of

course, could be due to subtle differences between the

instruments, both of which were calibrated in the lab-

oratory before deployment. However, even after

computing the average P(D) over the 2-m grid con-

taining four detectors all lying within 1.93m of detector

A, there is still considerable variability in time at larger

sizes as shown in Fig. 6b. One can also sense the in-

creasing variability (relative dispersion) with in-

creasing size by the spikiness. The same variability and

trends with increasing diameters in the average P(D)

persists even when considering the entire 100-m net-

work as illustrated in Fig. 6c. Yet all three examples

show persistence in many of the overall structures in

time regardless of the size of the network suggesting

that the variability is real.

Indeed, these points are well illustrated in Fig. 7. With

the exception of the very largest drop sizes, it appears

that the mean values of P(D) (solid lines) are strikingly

similar regardless of the size of the network. What is

clearly different are the relative dispersions (dotted–

dashed lines) showing the variability of a 1-min PSD

over different sizes of networks. As one would expect,

whileRD for a single instrument can be quite substantial

(magenta line), this potential variability is significantly

reduced after averaging over several detectors in a net-

work. For example, the peak RD of 8.2 observed at the

largest sizes by one detector is reduced by 1/
ffiffiffiffiffi
19

p
to 1.92

as observed over all 19 instruments. This would seem to

suggest that the variability is entirely due to sampling.

However, that turns out not to be correct because for

over a 2-m network of M 5 4 detectors, RD actually

decreases even more than for 19 detectors. Sampling

would suggest RD should have increased to 4.1, not de-

creased to 0.8. Something else is happening. Given the

discussion concerning the fractional occupancy effect,

this could be explained simply if the fractional occu-

pancy f increased with decreasing network size as (3)

requires. Then for the same RDi, it would be possible for

RD to decrease even further even though there are fewer

instruments. However, that is not what is happening to

f 5 (M 2 m)/M, where m is the number of ‘‘no count’’

detectors out of M instruments in the network.

Instead, we see in Fig. 8 that the fractional occupancy

is actually increasing with increasing network size. This

would imply that RD should decrease toward RDi as the

network size increases. Instead, Fig. 7 shows it in-

creasing with increasing network size. Hence, we must

conclude that RD is actually increasing with increasing

network size for a different reason. In other words, as

a network extends over a larger area, the natural vari-

ability in P(D) actually increases in spite of any 1/
ffiffiffiffiffi
M

p
instrument effect.

b. A physical interpretation

This can be understood in terms of the spatial

spectrum of drop concentrations or counts n as dis-

cussed and calculated in Jameson et al. (2015). Be-

cause n5Nt 3 P(D jD), the spectrum of n is identical

to that for P(D jD). That is, at each drop size there is

FIG. 4. Contours ofRDi as a function ofRD and the fraction of the

network occupied by the drops. Note the increase in RD for a fixed

RDi as the fraction filled decreases.

FIG. 5. The network-averaged rainfall rate for the (a) intense rain

and (b) light rain as discussed in the text.
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a mean concentration, but the variance of the con-

centration produces the variance in P(D) as well as in

RD. Given a reasonable number of detectors to ade-

quately sample over the area, the physical reason for

the increased variance is that as the area sampled by

a network increases, the contributions to the variance

by all spatial wavelengths in the part of the spectrum

being sampled also increases. If we just consider

a simple sinusoidal wave having amplitude ai modu-

lating around the mean concentration, the variance

will be proportional to jaij2. As the dimension of the

area increases, the net variance will be proportional to

the sum of all the amplitudes weighted by their spec-

tral contributions. Hence, as the dimension of the area

increases, the net variance will increase mono-

tonically. Consequently, RDwill increase as the size of

the area increases at least up until a wavelength of

about 1/2 the characteristic dimension of the area if

such wavelengths are present. While this cutoff is not

rigid, longer wavelengths contribute mostly to the

mean value, which is subtracted when computing the

variance. Another way to think of it is that the net-

work acts to integrate the Fourier transform of the

spatial correlation function from the highest (small-

est) toward lower (longest) frequencies (wavelengths)

as the dimension of the network increases. Hence, this

finding is quite general and not peculiar to this par-

ticular set of measurements.

FIG. 6. Contour plots ofP(D) for (a) detectorA as in Fig. 1a, (b) 10log10P(D) over four detectors within a radius of 1.93m fromdetectorA,

and (c) 10log10 of the network-average P(D) over the entire network illustrating the effect of network (area) size.
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Moreover, this understanding can also explain why

RD increases with increasing drop size for a fixed area

covered by a network. The spatial distribution of drops

is patchier (i.e., the drops occur more locally with more

and larger gaps in between) as drop size increases (e.g.,

Jameson et al. 2015). Characterization of this patchier

spatial distribution, then, requires greater spatial

spectral widths as is well known from Fourier trans-

form theory. Consequently, for the reasons given

above, the variances must also increase as drop size

increases. This effect is further amplified by the ten-

dency toward lower mean P(D) with increasing drop

size so that the net effect is an increase in the relative

dispersions as the drops become larger just as is

observed.

In turn, this implies that the total variability of the

distribution over a network should also increase. One

measure of this total variability is the sum of the rela-

tive dispersions over all drop sizes as illustrated in

Fig. 9. Obviously, the total variability increases

monotonically with increasing dimension of the net-

work. While this can be well fit parametrically by

a power law, the ranges of the variables are too small to

allow any physically reliable interpretation, and one

should certainly not extrapolate to dimensions greater

than those of the observations. This also suggests that if

one had access to the full relevant spatial spectrum (i.e.,

Fourier transform of the spatial correlation function), in

a particular situation, it might be possible to calculate

how the total variability would scale with the size of an

area. Unfortunately, such information is not readily

available.

c. Further analyses

Naturally, as one would expect, this same effect ap-

pears to be true regardless of the meteorology as illus-

trated in Fig. 10, where we subdivide the data into more

intense or lighter rain. The same network size (area)

FIG. 7. The intrinsicP(D) averaged over different sizes (areas) of

networks (solid lines) and the observed total RD for the different

networks as functions of drop size over the 440min of observations.

Note the increase inRDwith increasing network size (area) and the

similarities among the average PSDs.

FIG. 8. Plots of the total fraction of the network filled during the

entire period of observation as a function of drop diameter. Note

that the fraction occupied actually increases as the network size

(area) increases so that it cannot explain the observed increase in

RD with increasing network size (area).

FIG. 9. The total relative dispersion (total variability) of the size

probability distribution over the network plotted as a function of

network dimension calculated by summing over all drop sizes.

While this can be well fit parametrically by a power law, the ranges

of the variables are too small to allow any physically reliable

interpretation.
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effect on the relative dispersion is apparent in both in-

stances, as would be expected given the above discus-

sion. There are some differences between the lighter and

more intense rain, of course, as one would expect for

different spatial spectra.

Clearly and, in retrospect, not surprisingly, these re-

sults imply that there can be a significant scatter of ob-

served PSDs about any overall mean PSD. This is well

illustrated in Fig. 11, where the 2s bounds about the

intrinsic average PSD are plotted. While this bounded

area appears to be a reasonable size, the behavior of the

network-average P(D) (dotted–dashed line) at larger

drop sizes suggests that such a conclusion fails to capture

all of the variability over an area (network).

Indeed, just knowing a mean intrinsic PSD has its

limitations with regard to the anticipated variability over

an area. That is, one should expect that fluctuations in

integrated variables such as R, Z, and the kinetic energy

available for soil erosion should exceed what would be

implied if one just considered fluctuations in the mean

intrinsic PSD. That is, the natural variability of these var-

iables is larger when the intrinsic PSD is spread out over

areas because of the effects of spatial variability. Un-

fortunately, this is typically ignored in such calculations.

So what is more representative of the actual variability

over a network (area) since Fig. 11 is incomplete? To

reduce the effects of randomness in the sampling, one

way to address this question is to consider time-average

observed network PSD. Here we will consider 20-min

network-average PSD. For the 440-min period of obser-

vations, this provides only 22 observed PSDs over the

network, however. While useful, such a limited set is

unlikely to capture the full potential real variability im-

plied by the set of observations. To expand the size of

a set of potential PSDs,we use the observed network time

series of drop counts to define the distribution of mean

drop counts using Bayesian analyses (Jameson 2007). In

addition, the network-average temporal correlation

functions at each size can be computed. These two com-

ponents are then used to expand the size of the observed

set of data in a manner consistent with the observed

counts at all the drop sizes and with the observed corre-

lation functions as explained in detail in Jameson (2015).

While the reader is referred to these latter references

for a more complete discussion, we briefly describe the

FIG. 10. As in Fig. 7, but for (a) the more intense rain and (b) the

more stratiform rain noted in Fig. 5.

FIG. 11. Plots of the average intrinsic PSD and that observed

over the entire network. The red-filled area illustrates the spread

associated with the intrinsic PSD. Note that the mean curve for the

entire network falls outside this region for drops larger than 4-mm

diameter.

1394 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 72



procedure here. For each observed count of particles of

a specified size, the application of the Bayesian ap-

proach under an assumption of counting statistics

(Poisson or Gaussian, for example) produces a distribu-

tion of mean values of counts per unit observation in-

terval. The most frequent mean values then emerge

naturally as the most likely (ML) values surrounded by

an estimate of the entire probability density function

(pdf) of these mean values. Zeroes are included in this

distribution to account for the frequency of data voids at

each size during the observations.

The correlation among drops of the same size is de-

scribed by the appropriate correlation function, usually

an exponential having the correct 1/e correlation length,

where e is the Euler number. In this work the cross

correlation among drops of different sizes is not directly

considered but instead arises naturally by applying the

autocorrelation function for each different drop size to

the same field of random numbers as described and

demonstrated in Jameson (2015). This correlation of

counts can be interpreted as a description of the mete-

orological ‘‘structure,’’ which, in turn, is a reflection of

whatever physical processes produced it. A detailed

knowledge of the meteorology is not required to use the

correlation information. At each drop size, these cor-

relation functions are then applied to an uncorrelated

string of unit variance numbers uniformly distributed

over [0, 1]. These correlated numbers are then used to

generate a string of correlated drop counts at each size

using the observed distributions of the mean counts and

using the copula statistical technique. This technique is

described in some detail with the appropriate references

in Jameson (2015) and will not be repeated here. It

should be noted that different random strings yield dif-

ferent sets of counts. This approach, then, makes it

possible to form additional PSDs not actually observed

but still consistent with the actual measurements. In

effect, this approach provides a much fuller expression

of all of the information contained within the observed

correlations and drop counts than is given by just the

realizations actually observed.

Using this approach for two different strings of ran-

dom numbers, two sets each of 40 000 one-minute net-

work counts at each drop size bin are generated. This

now gives us 4000 additional 20-min PSDs that are

consistent with the original set of data. In Fig. 12, these

PSDs (gray) are plotted along with the observed (blue)

22 twenty-minute-average PSDs. Obviously, both the

observed and simulated network 20-min-average PSDs

show considerably greater variability than the RDi as-

sociated with the intrinsic PSDs would imply. This is

important because it means that collecting measure-

ments over an area does not necessarily lead to less

spread in the estimated PSDs even though many more

instruments are included.

Moreover, this variability seems to increase signifi-

cantly beyond about 1.5-mm diameter. To show this

more clearly, the time-averaged network-relative dis-

persions as a function of drop size are plotted in Fig. 13.

The observed values increase with increasing network

size (area) and with increasing drop size at least up to 2–

3-mm diameters. Beyond that, the average relative dis-

persion appears to decline. This is somewhat surprising

given the earlier discussion above (i.e., increased

patchiness and lower mean probabilities at larger sizes).

To explore why this might be happening, we take the

simulation results and compute the network-averaged

RD over time. This yields about 2000 samples as com-

pared to the observed 50–100 samples at the larger drop

sizes. If controlled simply by sample statistics, this would

suggest a decrease in RD by over a factor of 4. However,

the opposite occurs as illustrated by the dotted–dashed

curve in Fig. 13.

Despite the much larger samples corresponding to the

simulation, the relative dispersion actually increases

monotonically for drop sizes greater than 1-mm di-

ameter as we would expect and in contrast to the direct

but apparently misleading observations. We believe,

then, that this difference reflects an inadequate sampling

of the physics by the set of observations. This phenom-

enon has been observed before, such as when in-

vestigators attempt to use a limited set of disdrometer

observations to compute the so-called Z–R relations

FIG. 12. As in Fig. 11, but with overlays of observed 20-min PSDs

(blue lines which become black in the red areas) and simulated

20-min-average PSDs (gray) derived from the expanded dataset as

discussed in the text. Note the much greater network variability

compared with that for the intrinsic PSD.
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prevalent throughout radar meteorology (Jameson and

Kostinski 2002) and to deduce correlations among pa-

rameters (e.g., Jameson 2015, Fig. 12 therein). There, it

was found that false correlations and data misfits oc-

curred because of an extreme undersampling of the

number of drops. The effects of this undersampling of

the physics could, in part, be alleviated using a dataset

expanded along the approach outlined above (e.g.,

Jameson 2015). The observations, after all, are just

a limited set of realizations from the rich statistical

processes described more completely by the correlation

functions and distributions of mean counts for the dif-

ferent drop sizes. The simulation, then, provides access

tomanymore of the possibilities than just those sampled

in the observations. Apparently, this can be important at

times.

4. Summary

As discussed above, a drop size distribution can be

expressed as DSD 5 Nt 3 P(D) 5 Nt 3 PSD. The var-

iability of PSD is then defined by the distribution of

probabilities P(PD jD) at each drop size and is in-

vestigated over a network of optical disdrometers. It was

found that the variability as measured by the relative

dispersions RD of P(PD jD) as functions of drop size

increases with increasing size of the network and with

increasing size of the drops. Furthermore, the variability

over a network is often significantly greater than that

implied by the intrinsic PSD—that is, the PSD deduced

from one or more instruments after excluding all zero

drop counts.

Both of these observations can be explained in terms

of the spatial spectrum ofP(D). That is, each component

of such a spectrum contributes to the variance and to the

RD. As a network size (area) increases, more spectral

components contribute, thus increasing RD since the

averageP(D) remains fixed.Another way to think of it is

that the network acts to integrate the Fourier transform

of the spatial correlation function from the smallest to-

ward larger wavelengths as the dimension of the net-

work increases. Likewise, the spatial distribution of

raindrops becomes spikier or patchier as the drop size

increases. From classic Fourier transform theory, this, in

turn, implies a greater number of spatial spectral com-

ponents in order to characterize this spatial distribution

so RD increases with increasing drop size. These obser-

vations, then, suggest that if one has access to a charac-

terization of the spatial spectrum of the rain (i.e., the

Fourier transform of the spatial correlation function), it

should be possible to apply an intrinsic drop size distri-

bution properly over an area. In the absence of that in-

formation, however, the intrinsic PSD and RDi will

underestimate the true areal variability. Of course, it

must also be remembered that time averaging tends to

reduce the variability due to sampling fluctuations, but it

does not necessarily eliminate or smooth out the true

physical variability (e.g., Jameson et al. 2015).

Finally, as observed in previous studies, care must be

taken that the physics is being properly sampled. Even

though 1-min measurements over 19 detectors for

440min sounds like a lot of data, it was found that even

that amount of information did not provide a full char-

acterization of the likely true variability of the PSD

without additional expansion of the set of observations

because the observations themselves represent only one

realization of multiple stochastic processes. It must also

be remembered that in this work we have ignored the

variability of the total number of drops, which also

contributes significantly and probably dominantly to the

variability of the rainfall rate and other integrated pa-

rameters as previously recognized by Jameson and

Kostinski (2001).
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