There is a striking and unexplained dearth of brown dwarf companions in close
orbits (< 3AU) around stars more massive than the Sun, in stark contrast to the
frequency of stellar and planetary companions. Although rare and relatively
short-lived, these systems leave detectable evolutionary end points in the form
of white dwarf - brown dwarf binaries and these remnants can offer unique
insights into the births and deaths of their parent systems. We present the
discovery of a close (orbital separation ~ 0.006 AU) substellar companion to a
massive white dwarf member of the Praesepe star cluster. Using the cluster age
and the mass of the white dwarf we constrain the mass of the white dwarf
progenitor star to lie in the range 3.5 - 3.7 Msun (B9). The high mass of the
white dwarf means the substellar companion must have been engulfed by the B
star's envelope while it was on the late asymptotic giant branch (AGB). Hence,
the initial separation of the system was ~2 AU, with common envelope evolution
reducing the separation to its current value. The initial and final orbital
separations allow us to constrain the combination of the common envelope
efficiency (alpha) and binding energy parameters (lambda) for the AGB star to
alpha lambda ~3. We examine the various formation scenarios and conclude that
the substellar object was most likely to have been captured by the white dwarf
progenitor early in the life of the cluster, rather than forming in situ.Comment: Accepted for publication in ApJ