3,249 research outputs found

    Usability evaluation of an eHealth intervention for family carers of individuals affected by psychosis: A mixed-method study

    Get PDF
    Background Existing research suggests that eHealth interventions targeting family carers of individuals with long-term illness offer a promising approach to care delivery. In particular, digital psychoeducational interventions with interactive psychosocial support are well-received with high rates of satisfaction and acceptability. However, development of such interventions for psychosis carers is lacking. We developed a multi-component eHealth intervention specifically for carers of individuals affected by psychosis, called COPe-support (Carers fOr People with Psychosis e-support). Objective Using mixed methods to evaluate usability, system heuristics and perceived acceptability, we conducted a usability study to establish the suitability of the intervention prototype for the target user group. Methods Twenty-three carers were recruited to the study and participated in a think-aloud test or a remote online trial of the intervention. Qualitative feedback, post-use System Usability Scale (SUS) scores, and real-world usage data collected from the tests were analysed. These were also supplemented with heuristic evaluation data provided by an independent eLearning technology expert. Results Participants evaluated the intervention content as useful and helpful, and indicated that the system had satisfactory usability with a mean SUS score of 73%, above the usability quality benchmark threshold. Study results identified some minor usability issues, which were corroborated with the eLearning expert’s heuristic evaluation findings. We used these results to refine the COPe-support intervention. Conclusions The usability study with end-users and service providers identified real-life usage and usability issues. The study results helped us refine COPe-support and its delivery strategy before its launch as part of a large-scale clinical trial

    Stabilizing entanglement autonomously between two superconducting qubits

    Full text link
    Quantum error-correction codes would protect an arbitrary state of a multi-qubit register against decoherence-induced errors, but their implementation is an outstanding challenge for the development of large-scale quantum computers. A first step is to stabilize a non-equilibrium state of a simple quantum system such as a qubit or a cavity mode in the presence of decoherence. Several groups have recently accomplished this goal using measurement-based feedback schemes. A next step is to prepare and stabilize a state of a composite system. Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved by an autonomous feedback scheme which combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative reservoir. Similar autonomous feedback techniques have recently been used for qubit reset and the stabilization of a single qubit state, as well as for creating and stabilizing states of multipartite quantum systems. Unlike conventional, measurement-based schemes, an autonomous approach counter-intuitively uses engineered dissipation to fight decoherence, obviating the need for a complicated external feedback loop to correct errors, simplifying implementation. Instead the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building-block state for quantum information processing. Such autonomous schemes, broadly applicable to a variety of physical systems as demonstrated by a concurrent publication with trapped ion qubits, will be an essential tool for the implementation of quantum-error correction.Comment: 39 pages, 7 figure

    An Open-System Quantum Simulator with Trapped Ions

    Full text link
    The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating the systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored. Here we report the first realization of a toolbox for simulating an open quantum system with up to five qubits. Using a quantum computing architecture with trapped ions, we combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We illustrate this engineering by the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions and the quantum non-demolition measurement of multi-qubit observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system quantum simulation and computation.Comment: Pre-review submission to Nature. For an updated and final version see publication. Manuscript + Supplementary Informatio

    Evaluation of two dairy herd reproductive performance indicators that are adjusted for voluntary waiting period

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overall reproductive performance of dairy herds is monitored by various indicators. Most of them do not consider all eligible animals and do not consider different management strategies at farm level. This problem can be alleviated by measuring the proportion of pregnant cows by specific intervals after their calving date or after a fixed time period, such as the voluntary waiting period. The aim of this study was to evaluate two reproductive performance indicators that consider the voluntary waiting period at the herd. The two indicators were: percentage of pregnant cows in the herd after the voluntary waiting period plus 30 days (PV30) and percentage of inseminated cows in the herd after the voluntary waiting period plus 30 days (IV30). We wanted to assess how PV30 and IV30 perform in a simulation of herds with different reproductive management and physiology and to compare them to indicators of reproductive performance that do not consider the herd voluntary waiting period.</p> <p>Methods</p> <p>To evaluate the reproductive indicators we used the SimHerd-program, a stochastic simulation model, and 18 scenarios were simulated. The scenarios were designed by altering the reproductive management efficiency and the status of reproductive physiology of the herd. Logistic regression models, together with receiver operating characteristics (ROC), were used to examine how well the reproductive performance indicators could discriminate between herds of different levels of reproductive management efficiency or reproductive physiology.</p> <p>Results</p> <p>The logistic regression models with the ROC analysis showed that IV30 was the indicator that best discriminated between different levels of management efficiency followed by PV30, calving interval, 200-days not-in calf-rate (NotIC200), in calf rate at100-days (IC100) and a fertility index. For reproductive physiology the ROC analysis showed that the fertility index was the indicator that best discriminated between different levels, followed by PV30, NotIC200, IC100 and the calving interval. IV30 could not discriminate between the two levels.</p> <p>Conclusion</p> <p>PV30 is the single best performance indicator for estimating the level of both herd management efficiency and reproductive physiology followed by NotIC200 and IC100. This indicates that PV30 could be a potential candidate for inclusion in dairy herd improvement schemes.</p

    Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors

    Get PDF
    The importance of individual species in mediating ecosystem process and functioning is generally accepted, but categorical descriptors that summarize species-specific contributions to ecosystems tend to reference a limited number of biological traits and underestimate the importance of how organisms interact with their environment. Here, we show how three functionally contrasting sediment-dwelling marine invertebrates affect fluid and particle transport - important processes in mediating nutrient cycling - and use high-resolution reconstructions of burrow geometry to determine the extent and nature of biogenic modification. We find that individual functional effect descriptors fall short of being able to adequately characterize how species mediate the stocks and flows of important ecosystem properties and that, in contrary to common practice and understanding, they are not substitutable with one another because they emphasize different aspects of species activity and behavior. When information derived from these metrics is combined with knowledge of how species behave and modify their environment, however, detailed mechanistic information emerges that increases the likelihood that a species functional standing will be appropriately summarized. Our study provides evidence that more comprehensive functional effect descriptors are required if they are to be of value to those tasked with projecting how altered biodiversity will influence future ecosystems

    Measures used to assess interventions for increasing patient involvement in Danish healthcare setting: a rapid review

    Get PDF
    Objective: To identify measures used within Denmark evaluating any type of intervention designed to facilitate patient involvement in healthcare. Design: Environmental scan employing rapid review methods. Data sources: MEDLINE, PsycInfo and CINAHL were searched from 6–9 April 2021 from database inception up to the date of the search. Eligibility criteria: Quantitative, observational and mixed methods studies with empirical data on outcomes used to assess any type of intervention aiming to increase patient involvement with their healthcare. Language limitations were Danish and English. Data extraction and synthesis: Two independent reviewers extracted data from 10% of the included studies and, due to their agreement, the data from the rest were extracted by first author. Data were analysed with reference to existing categories of measuring person-centred care; findings were synthesised using narrative summaries. Adapted Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines were used to guide reporting. Results: Among 3767 records, 43 studies met the inclusion criteria, including 74 different measures used to evaluate interventions aimed at increasing patient involvement within healthcare in Danish hospital and community settings. Generic measures assessed: patient engagement (n=3); supporting self-management (n=8); supporting shared decision-making (n=9); patient satisfaction and experiences of care (n=11); health-related patient-reported outcome (n=20). Conclusions: Across Denmark, complex interventions designed to improve patient involvement with healthcare vary in their goals and content. Some targeting healthcare professionals, some patient health literacy and some service infrastructure. A plethora of measures assess the impact of these interventions on patient, professional and service delivery outcomes. Few measures assessed patient involvement directly, and it is unclear which proxy measures capture indicators of perceived involvement. Lack of conceptual clarity between intervention goals, the components of change and measures makes it difficult to see what types of intervention can best support change in services to ensure patients are more effectively involved in their healthcare

    A frequentist framework of inductive reasoning

    Full text link
    Reacting against the limitation of statistics to decision procedures, R. A. Fisher proposed for inductive reasoning the use of the fiducial distribution, a parameter-space distribution of epistemological probability transferred directly from limiting relative frequencies rather than computed according to the Bayes update rule. The proposal is developed as follows using the confidence measure of a scalar parameter of interest. (With the restriction to one-dimensional parameter space, a confidence measure is essentially a fiducial probability distribution free of complications involving ancillary statistics.) A betting game establishes a sense in which confidence measures are the only reliable inferential probability distributions. The equality between the probabilities encoded in a confidence measure and the coverage rates of the corresponding confidence intervals ensures that the measure's rule for assigning confidence levels to hypotheses is uniquely minimax in the game. Although a confidence measure can be computed without any prior distribution, previous knowledge can be incorporated into confidence-based reasoning. To adjust a p-value or confidence interval for prior information, the confidence measure from the observed data can be combined with one or more independent confidence measures representing previous agent opinion. (The former confidence measure may correspond to a posterior distribution with frequentist matching of coverage probabilities.) The representation of subjective knowledge in terms of confidence measures rather than prior probability distributions preserves approximate frequentist validity.Comment: major revisio

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution

    Get PDF
    Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work

    A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01

    Get PDF
    Affinity and stability of peptides bound by major histocompatibility complex (MHC) class I molecules are important factors in presentation of peptides to cytotoxic T lymphocytes (CTLs). In silico prediction methods of peptide-MHC binding followed by experimental analysis of peptide-MHC interactions constitute an attractive protocol to select target peptides from the vast pool of viral proteome peptides. We have earlier reported the peptide binding motif of the porcine MHC-I molecules SLA-1*04:01 and SLA-2*04:01, identified by an ELISA affinity-based positional scanning combinatorial peptide library (PSCPL) approach. Here, we report the peptide binding motif of SLA-3*04:01 and combine two prediction methods and analysis of both peptide binding affinity and stability of peptide-MHC complexes to improve rational peptide selection. Using a peptide prediction strategy combining PSCPL binding matrices and in silico prediction algorithms (NetMHCpan), peptide ligands from a repository of 8900 peptides were predicted for binding to SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01 and validated by affinity and stability assays. From the pool of predicted peptides for SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01, a total of 71, 28, and 38 % were binders with affinities below 500 nM, respectively. Comparison of peptide-SLA binding affinity and complex stability showed that peptides of high affinity generally, but not always, produce complexes of high stability. In conclusion, we demonstrate how state-of-the-art prediction and in vitro immunology tools in combination can be used for accurate selection of peptides for MHC class I binding, hence providing an expansion of the field of peptide-MHC analysis also to include pigs as a livestock experimental model.Fil: Pedersen, Lasse Eggers. Technical University of Denmark; DinamarcaFil: Rasmussen, Michael. Universidad de Copenhagen; DinamarcaFil: Harndahl, Mikkel. Universidad de Copenhagen; DinamarcaFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas (subsede Chascomús) | Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas (subsede Chascomús); ArgentinaFil: Buus, Søren. Universidad de Copenhagen; DinamarcaFil: Jungersen, Gregers. Technical University of Denmark; Dinamarc
    corecore