123 research outputs found

    Role of aldosterone on lung structural remodelling and right ventricular function in congestive heart failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanisms of benefit of mineralocorticoid receptors antagonists in congestive heart failure (CHF) are still debated. We hypothesized that aldosterone contributes to pulmonary remodelling and right ventricular (RV) dysfunction associated with CHF by stimulation of lung myofibroblasts (MYFs) proliferation.</p> <p>Methods</p> <p>Rats with moderate to large myocardial infarcts (MI) and CHF were studied. Two weeks after MI, spironolactone 100 mg/kg/day (n = 21) or no treatment (n = 24) were given for 3 weeks and compared to sham (n = 8).</p> <p>Results</p> <p>Infarct size was similar by ultrasound and pathologic measures in both MI groups.</p> <p>The MI-untreated group developed important lung remodelling with nearly doubling of dry lung weight (p < 0.01), reduced left ventricular (LV) fractional shortening (16 ± 2% vs. 53 ± 1%; mean ± SEM, p < 0.0001), pulmonary hypertension (RV systolic pressure: 40 ± 3 mmHg vs. 27 ± 1 mmHg, p < 0.01) and RV hypertrophy (RV/(LV + septum): 38 ± 3% vs. 24 ± 1%, p < 0.05). Spironolactone had no effect on these parameters and did not improve LV or RV performance (tricuspid annular plane systolic excursion and RV myocardial performance index) measured by echocardiography. CHF induced a restrictive respiratory syndrome with histological lung fibrosis: this was also unaffected by spironolactone. Finally, isolated lung MYFs did not proliferate after exposure to aldosterone.</p> <p>Conclusion</p> <p>Aldosterone does not significantly contribute to pulmonary remodelling and RV dysfunction associated with CHF. Other mechanisms are responsible for the beneficial effects of spironolactone in CHF.</p

    A phase I study with MAG-camptothecin intravenously administered weekly for 3 weeks in a 4-week cycle in adult patients with solid tumours

    Get PDF
    In MAG-camptothecin (MAG-CPT), the topoisomerase inhibitor camptothecin is linked to a water-soluble polymer. Preclinical experiments showed enhanced antitumour efficacy and limited toxicity compared to camptothecin alone. Prior phase I trials guided the regimen used in this study. The objectives were to determine the maximum tolerated dose, dose-limiting toxicities, safety profile, and pharmacokinetics of weekly MAG-CPT. Patients with solid tumours received MAG-CPT intravenously administered weekly for 3 weeks in 4-week cycles. At the starting dose level ( 80 mg m(-2) week(-1)), no dose-limiting toxicities occurred during the first cycle (n = 3). Subsequently, three patients were enrolled at the second dose level ( 120 mg m(-2) week(-1)). Two of three patients at the 80 mg m(-2) week(-1) cohort developed haemorrhagic cystitis ( grade 1/3 dysuria and grade 2/3 haematuria) during the second and third cycles. Next, the 80 mg m(-2) week(-1) cohort was enlarged to a total of six patients. One other patient at this dose level experienced grade 1 haematuria. At 120 mg m(-2) week(-1), grade 1 bladder toxicity occurred in two of three patients. Dose escalation was stopped at 120 mg m(-2) week(-1). Cumulative bladder toxicity was dose-limiting toxicity at 80 mg m(-2) week(-1). Pharmacokinetics revealed highly variable urinary camptothecin excretion, associated with bladder toxicity. Due to cumulative bladder toxicity, weekly MAG-CPT is not a suitable regimen for treatment of patients with solid tumours

    Imbalance of neurotrophin receptor isoforms TrkB-FL/TrkB-T1 induces neuronal death in excitotoxicity

    Get PDF
    A better understanding of the mechanisms underlying neuronal death in cerebral ischemia is required for the development of stroke therapies. Here we analyze the contribution of the tropomyosin-related kinase B (TrkB) neurotrophin receptor to excitotoxicity, a primary pathological mechanism in ischemia, which is induced by overstimulation of glutamate receptors of the N-methyl-D-aspartate type. We demonstrate a significant modification of TrkB expression that is strongly associated with neurodegeneration in models of ischemia and in vitro excitotoxicity. Two mechanisms cooperate for TrkB dysregulation: (1) calpain-processing of full-length TrkB (TrkB-FL), high-affinity receptor for brain-derived neurotrophic factor, which produces a truncated protein lacking the tyrosine-kinase domain and strikingly similar to the inactive TrkB-T1 isoform and (2) reverse regulation of the mRNA of these isoforms. Collectively, excitotoxicity results in a decrease of TrkB-FL, the production of truncated TrkB-FL and the upregulation of TrkB-T1. A similar neuro-specific increase of the TrkB-T1 isoform is also observed in stroke patients. A lentivirus designed for both neuro-specific TrkB-T1 interference and increased TrkB-FL expression allows recovery of the TrkB-FL/TrkB-T1 balance and protects neurons from excitotoxic death. These data implicate a combination of TrkB-FL downregulation and TrkB-T1 upregulation as significant causes of neuronal death in excitotoxicity, and reveal novel targets for the design of stroke therapies

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Selectivity of the photosensitiser Tookad® for photodynamic therapy evaluated in the Syrian golden hamster cheek pouch tumour model

    Get PDF
    The response to photodynamic therapy (PDT) with the photosensitiser (PS) Tookad was measured in the Syrian hamster cheek pouch model on normal mucosae and chemically induced squamous cell carcinoma. This PS is a palladium-bacteriopheophorbide presenting absorption peaks at 538 and 762 nm. The light dose, drug dose and drug injection-light irradiation times (DLI), ranging between 100 and 300 J cm(-2), 1-5 mg kg(-1) and 10-240 min respectively, were varied and the response to PDT was analysed by staging the macroscopic response and by the histological examination of the sections of the irradiated cheek pouch. A fast time decay of the tissular response with drug dose of 1-5 mg kg(-1) was observed for DLI ranging from 10 to 240 min and for light doses of 100-300 J cm(-2) delivered at a light dose rate of 150 mW cm(-2). A significantly higher level of tissular response was observed for squamous cell carcinoma compared to normal tissue. Nevertheless, the threshold level of the drug-light dose for a detectable response was not significantly different in the tumoral vs normal tissue. The highest response at the shortest DLIs and the absence of measurable response at DLI larger than 240 min at light dose of 300 J cm(-2) and drug dose of 5 mg kg(-1) reveals the predominantly vascular effect of Tookad. This observation suggests that Tookad could be effective in PDT of vascularised lesions

    Probenecid Blocks Human P2X7 Receptor-Induced Dye Uptake via a Pannexin-1 Independent Mechanism

    Get PDF
    P2X7 is a ligand-gated ion channel which is activated by ATP and displays secondary permeability characteristics. The mechanism of development of the secondary permeability pathway is currently unclear, although a role for the hemichannel protein pannexin-1 has been suggested. In this study we investigated the role of pannexin-1 in P2X7-induced dye uptake and ATP-induced IL-1β secretion from human monocytes. We found no pharmacological evidence for involvement of pannexin-1 in P2X7-mediated dye uptake in transfected HEK-293 cells with no inhibition seen for carbenoxolone and the pannexin-1 mimetic inhibitory peptide, 10Panx1. However, we found that probenecid inhibited P2X7-induced cationic and anionic dye uptake in stably transfected human P2X7 HEK-293 cells. An IC50 value of 203 μM was calculated for blockade of ATP-induced responses at human P2X7. Probenecid also reduced dye uptake and IL-1β secretion from human CD14+ monocytes whereas carbenoxolone and 10Panx1 showed no inhibitory effect. Patch clamp and calcium indicator experiments revealed that probenecid directly blocks the human P2X7 receptor

    The Open AUC Project

    Get PDF
    Progress in analytical ultracentrifugation (AUC) has been hindered by obstructions to hardware innovation and by software incompatibility. In this paper, we announce and outline the Open AUC Project. The goals of the Open AUC Project are to stimulate AUC innovation by improving instrumentation, detectors, acquisition and analysis software, and collaborative tools. These improvements are needed for the next generation of AUC-based research. The Open AUC Project combines on-going work from several different groups. A new base instrument is described, one that is designed from the ground up to be an analytical ultracentrifuge. This machine offers an open architecture, hardware standards, and application programming interfaces for detector developers. All software will use the GNU Public License to assure that intellectual property is available in open source format. The Open AUC strategy facilitates collaborations, encourages sharing, and eliminates the chronic impediments that have plagued AUC innovation for the last 20 years. This ultracentrifuge will be equipped with multiple and interchangeable optical tracks so that state-of-the-art electronics and improved detectors will be available for a variety of optical systems. The instrument will be complemented by a new rotor, enhanced data acquisition and analysis software, as well as collaboration software. Described here are the instrument, the modular software components, and a standardized database that will encourage and ease integration of data analysis and interpretation software

    The 5′ Leader of the mRNA Encoding the Mouse Neurotrophin Receptor TrkB Contains Two Internal Ribosomal Entry Sites that Are Differentially Regulated

    Get PDF
    A single internal ribosomal entry site (IRES) in conjunction with IRES transactivating factors (ITAFs) is sufficient to recruit the translational machinery to a eukaryotic mRNA independent of the cap structure. However, we demonstrate that the mouse TrkB mRNA contains two independent IRESes. The mouse TrkB mRNA consists of one of two 5′ leaders (1428 nt and 448 nt), both of which include the common 3′ exon (Ex2, 344 nt). Dicistronic RNA transfections and in vitro translation of monocistronic RNA demonstrated that both full-length 5′ leaders, as well as Ex2, exhibit IRES activity indicating the IRES is located within Ex2. Additional analysis of the upstream sequences demonstrated that the first 260 nt of exon 1 (Ex1a) also contains an IRES. Dicistronic RNA transfections into SH-SY5Y cells showed the Ex1a IRES is constitutively active. However, the Ex2 IRES is only active in response to retinoic acid induced neural differentiation, a state which correlates with the synthesis of the ITAF polypyrimidine tract binding protein (PTB1). Correspondingly, addition or knock-down of PTB1 altered Ex2, but not Ex1a IRES activity in vitro and ex vivo, respectively. These results demonstrate that the two functionally independent IRESes within the mouse TrkB 5′ leader are differentially regulated, in part by PTB1

    Chromosome 7 and 19 Trisomy in Cultured Human Neural Progenitor Cells

    Get PDF
    BACKGROUND:Stem cell expansion and differentiation is the foundation of emerging cell therapy technologies. The potential applications of human neural progenitor cells (hNPCs) are wide ranging, but a normal cytogenetic profile is important to avoid the risk of tumor formation in clinical trials. FDA approved clinical trials are being planned and conducted for hNPC transplantation into the brain or spinal cord for various neurodegenerative disorders. Although human embryonic stem cells (hESCs) are known to show recurrent chromosomal abnormalities involving 12 and 17, no studies have revealed chromosomal abnormalities in cultured hNPCs. Therefore, we investigated frequently occurring chromosomal abnormalities in 21 independent fetal-derived hNPC lines and the possible mechanisms triggering such aberrations. METHODS AND FINDINGS:While most hNPC lines were karyotypically normal, G-band karyotyping and fluorescent in situ hybridization (FISH) analyses revealed the emergence of trisomy 7 (hNPC(+7)) and trisomy 19 (hNPC(+19)), in 24% and 5% of the lines, respectively. Once detected, subsequent passaging revealed emerging dominance of trisomy hNPCs. DNA microarray and immunoblotting analyses demonstrate epidermal growth factor receptor (EGFR) overexpression in hNPC(+7) and hNPC(+19) cells. We observed greater levels of telomerase (hTERT), increased proliferation (Ki67), survival (TUNEL), and neurogenesis (beta(III)-tubulin) in hNPC(+7) and hNPC(+19), using respective immunocytochemical markers. However, the trisomy lines underwent replicative senescence after 50-60 population doublings and never showed neoplastic changes. Although hNPC(+7) and hNPC(+19) survived better after xenotransplantation into the rat striatum, they did not form malignant tumors. Finally, EGF deprivation triggered a selection of trisomy 7 cells in a diploid hNPC line. CONCLUSIONS:We report that hNPCs are susceptible to accumulation of chromosome 7 and 19 trisomy in long-term cell culture. These results suggest that micro-environmental cues are powerful factors in the selection of specific hNPC aneuploidies, with trisomy of chromosome 7 being the most common. Given that a number of stem cell based clinical trials are being conducted or planned in USA and a recent report in PLoS Medicine showing the dangers of grafting an inordinate number of cells, these data substantiate the need for careful cytogenetic evaluation of hNPCs (fetal or hESC-derived) before their use in clinical or basic science applications
    corecore