112 research outputs found
Etoricoxib-induced life-threatening hyperkalemia and acute kidney dysfunction against the background of telmisartan and a low sodium diet
Drug-induced hyperkalemia is not uncommon and may be life-threatening when presenting acutely in the emergency department. We present a case of severe hyperkalemia precipitated acutely by etoricoxib in a patient who was on telmisartan and a low sodium (potassium chloride-rich) diet. A 75-year-old male with a past medical history of well-controlled diabetes and hypertension was prescribed etoricoxib (90 mg daily) for 3 days for musculoskeletal backache. He had been taking his routine medications including telmisartan and a potassium-rich salt substitute for many years, without any recent change in dosage or quantity. There was evidence of microalbuminurea; however, the renal functions and electrolytes prior to starting etoricoxib were normal. He presented to the emergency department with signs and symptoms of life-threatening hyperkalemia (serum potassium 7.7 mEq/dl), accelerated hypertension, congestive heart failure, pulmonary edema and acute renal failure. Acute medical management and withholding all drugs that could cause hyperkalemia improved his serum potassium levels over 24 h and renal parameters within 5 days. All the other drugs except etoricoxib were restarted under observation over 8 weeks with no recurrence of the acute episode. Non-steroidal analgesics and other COX-2 inhibitors (rofecoxib and celecoxib) have been known to precipitate renal failure and hyperkalemia specially in patients at risk for the same; although not unexpected, this may be the first reported case of life-threatening hyperkalemia precipitated by etoricoxib in a previously stable patient having increased risk of renal failure and hyperkalemia
Atorvastatin pretreatment diminishes the levels of myocardial ischemia markers early after CABG operation: an observational study
<p>Abstract</p> <p>Background</p> <p>Statin pretreatment has been associated with a decrease in myocardial ischemia markers after various procedures and cardiovascular events. This study examined the potential beneficial effects of preoperative atorvastatin treatment among patients undergoing on-pump CABG operation.</p> <p>Methods</p> <p>Twenty patients that had received atorvastatin treatment for at least 15 days prior to the operation and 20 patients who had not received any antihyperlipidemic agent prior to surgery were included in this study. CK-MB and troponin I levels were measured at baseline and 24 hours after the operation. Perioperative variables were also recorded.</p> <p>Results</p> <p>Twenty-four hours after the operation, troponin I and CK-MB levels were significantly lower in the atorvastatin group: for CK-MB levels, 12.9 ± 4.3 versus 18.7 ± 7.4 ng/ml, p = 0.004; for troponin I levels, 1.7 ± 0.3 versus 2.7 ± 0.7 ng/ml, p < 0.001. In addition, atorvastatin use was associated with a decrease in the duration of ICU stay.</p> <p>Conclusions</p> <p>Preoperative atorvastatin treatment results in significant reductions in the levels of myocardial injury markers early after on-pump CABG operation, suggesting a reduction in perioperative ischemia in this group of patients. Further studies are needed to elucidate the mechanisms of these potential benefits of statin pretreatment.</p
Etoricoxib - preemptive and postoperative analgesia (EPPA) in patients with laparotomy or thoracotomy - design and protocols
<p>Abstract</p> <p>Background and Objective</p> <p>Our objective was to report on the design and essentials of the <it>Etoricoxib </it>protocol<it>- Preemptive and Postoperative Analgesia (EPPA) </it>Trial, investigating whether preemptive analgesia with cox-2 inhibitors is more efficacious than placebo in patients who receive either laparotomy or thoracotomy.</p> <p>Design and Methods</p> <p>The study is a 2 × 2 factorial armed, double blinded, bicentric, randomised placebo-controlled trial comparing (a) etoricoxib and (b) placebo in a pre- and postoperative setting. The total observation period is 6 months. According to a power analysis, 120 patients scheduled for abdominal or thoracic surgery will randomly be allocated to either the preemptive or the postoperative treatment group. These two groups are each divided into two arms. Preemptive group patients receive etoricoxib prior to surgery and either etoricoxib again or placebo postoperatively. Postoperative group patients receive placebo prior to surgery and either placebo again or etoricoxib after surgery (2 × 2 factorial study design). The Main Outcome Measure is the cumulative use of morphine within the first 48 hours after surgery (measured by patient controlled analgesia PCA). Secondary outcome parameters include a broad range of tests including sensoric perception and genetic polymorphisms.</p> <p>Discussion</p> <p>The results of this study will provide information on the analgesic effectiveness of etoricoxib in preemptive analgesia and will give hints on possible preventive effects of persistent pain.</p> <p>Trial registration</p> <p>NCT00716833</p
ATL9, a RING Zinc Finger Protein with E3 Ubiquitin Ligase Activity Implicated in Chitin- and NADPH Oxidase-Mediated Defense Responses
Pathogen associated molecular patterns (PAMPs) are signals detected by plants that activate basal defenses. One of these PAMPs is chitin, a carbohydrate present in the cell walls of fungi and in insect exoskeletons. Previous work has shown that chitin treatment of Arabidopsis thaliana induced defense-related genes in the absence of a pathogen and that the response was independent of the salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signaling pathways. One of these genes is ATL9 ( = ATL2G), which encodes a RING zinc-finger like protein. In the current work we demonstrate that ATL9 has E3 ubiquitin ligase activity and is localized to the endoplasmic reticulum. The expression pattern of ATL9 is positively correlated with basal defense responses against Golovinomyces cichoracearum, a biotrophic fungal pathogen. The basal levels of expression and the induction of ATL9 by chitin, in wild type plants, depends on the activity of NADPH oxidases suggesting that chitin-mediated defense response is NADPH oxidase dependent. Although ATL9 expression is not induced by treatment with known defense hormones (SA, JA or ET), full expression in response to chitin is compromised slightly in mutants where ET- or SA-dependent signaling is suppressed. Microarray analysis of the atl9 mutant revealed candidate genes that appear to act downstream of ATL9 in chitin-mediated defenses. These results hint at the complexity of chitin-mediated signaling and the potential interplay between elicitor-mediated signaling, signaling via known defense pathways and the oxidative burst
A turbulent decade for NSAIDs: update on current concepts of classification, epidemiology, comparative efficacy, and toxicity
Non-steroidal anti-inflammatory drugs (NSAIDs) represent a diverse class of drugs and are among the most commonly used analgesics for arthritic pain worldwide, though long-term use is associated with a spectrum of adverse effects. The introduction of cyclooxygenase-2-selective NSAIDs early in the last decade offered an alternative to traditional NSAIDs with similar efficacy and improved gastrointestinal tolerability; however, emerging concerns about cardiovascular safety resulted in the withdrawal of two agents (rofecoxib and valdecoxib) in the mid-2000s and, subsequently, in an overall reduction in NSAID use. It is now understood that all NSAIDs are associated with some varying degree of gastrointestinal and cardiovascular risk. Guidelines still recommend their use, but little is known of how patients use these agents. While strategies and guidelines aimed at reducing NSAID-associated complications exist, there is a need for evidence-based algorithms combining cardiovascular and gastrointestinal factors that can be used to aid treatment decisions at an individual patient level
Recommended from our members
Oxidative discolouration in whole-head and cut lettuce: biochemical and environmental influences on a complex phenotype and potential breeding strategies to improve shelf-life
Lettuce discolouration is a key post-harvest trait. The major enzyme controlling oxidative discolouration
has long been considered to be polyphenol oxidase (PPO) however, levels of PPO and subsequent development of discolouration symptoms have not always correlated. The predominance of a latent state of the enzyme in plant tissues combined with substrate activation and contemporaneous suicide inactivation
mechanisms are considered as potential explanations for
this phenomenon. Leaf tissue physical properties have
been associated with subsequent discolouration and
these may be influenced by variation in nutrient
availability, especially excess nitrogen and head maturity at harvest. Mild calcium and irrigation stress has
also been associated with a reduction in subsequent
discolouration, although excess irrigation has been
linked to increased discolouration potentially through
leaf physical properties. These environmental factors,
including high temperature and UV light intensities,
often have impacts on levels of phenolic compounds
linking the environmental responses to the biochemistry
of the PPO pathway. Breeding strategies targeting the
PALand PPOpathway biochemistry and environmental
response genes are discussed as a more cost-effective
method of mitigating oxidative discolouration then
either modified atmosphere packaging or post-harvest
treatments, although current understanding of the
biochemistry means that such programs are likely to
be limited in nature and it is likely that they will need to be deployed alongside other methods for the foreseeable future
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.
BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors
BACKGROUND: Plant-pathogenic oomycetes are responsible for economically important losses in crops worldwide. Phytophthora palmivora, a tropical relative of the potato late blight pathogen, causes rotting diseases in many tropical crops including papaya, cocoa, oil palm, black pepper, rubber, coconut, durian, mango, cassava and citrus. Transcriptomics have helped to identify repertoires of host-translocated microbial effector proteins which counteract defenses and reprogram the host in support of infection. As such, these studies have helped in understanding how pathogens cause diseases. Despite the importance of P. palmivora diseases, genetic resources to allow for disease resistance breeding and identification of microbial effectors are scarce. RESULTS: We employed the model plant Nicotiana benthamiana to study the P. palmivora root infections at the cellular and molecular levels. Time-resolved dual transcriptomics revealed different pathogen and host transcriptome dynamics. De novo assembly of P. palmivora transcriptome and semi-automated prediction and annotation of the secretome enabled robust identification of conserved infection-promoting effectors. We show that one of them, REX3, suppresses plant secretion processes. In a survey for early transcriptionally activated plant genes we identified a N. benthamiana gene specifically induced at infected root tips that encodes a peptide with danger-associated molecular features. CONCLUSIONS: These results constitute a major advance in our understanding of P. palmivora diseases and establish extensive resources for P. palmivora pathogenomics, effector-aided resistance breeding and the generation of induced resistance to Phytophthora root infections. Furthermore, our approach to find infection-relevant secreted genes is transferable to other pathogen-host interactions and not restricted to plants.This work was supported by the Gatsby Charitable Foundation (RG62472),
by the Royal Society (RG69135) and by the European Research Council
(ERC-2014-STG, H2020, 637537)
- …