262 research outputs found

    Can atmospheric composition influence plant fossil preservation potential via changes in leaf mass per area? A new hypothesis based on simulated palaeoatmosphere experiments

    Get PDF
    Atmospheric composition, particularly levels of CO2 and O2, impacts all aspects of life but its role in relation to plant preservation in the fossil record is largely unconsidered. Plants, angiosperms in particular, have been widely shown to increase leaf mass per area (LMA) under high CO2 conditions and decrease LMA in low CO2 conditions. Leaf thickness has long been known to be a contributory factor in preservation potential in the plant fossil record, with thicker leaves considered to have a greater recalcitrance than thinner ones. Therefore, any change in leaf density/thickness, through changes to LMA, could lead to an increased or decreased preservation potential of fossil leaves at times of elevated or decreased CO2, respectively. . Additionally, the impact of changes to atmospheric O2 and to the atmospheric CO2:O2 ratio on LMA has not been previously considered in detail. This investigation examines the effect of simulated Mesozoic atmospheres, times of high CO2 and low O2, on LMA in a suite of gymnosperms that act as nearest living equivalents for common elements of Mesozoic floras. Exposure to high CO2 (~ 1,500 ppm) led to a statistically significant (p < 0.001) increase in LMA in four out of 6 species, and exposure to combined high CO2 and low O2 (~ 13%) induced a statistically significant (p < 0.001) increase in LMA in all six species. The investigation also examined the effects of atmospheric composition on %N, a key plant trait known to co-vary with LMA under modern atmospheric compositions that provides information on plant function and relates to photosynthetic efficiency. Most species showed decreased %N in treatments with increased LMA in agreement with modern ecological studies and supporting the co-varying nature of LMA and %N regardless of CO2:O2 ratio. These findings suggest that atmospheric composition has a pronounced impact on LMA. Based on these results, we propose the hypothesis that atmospheric composition is an important taphonomic filter of the fossil leaf record. Further research is now required to test the significance of atmospheric composition versus other well-known taphonomic filters

    Severe vitamin D deficiency in 6 Canadian First Nation formula-fed infants

    Get PDF
    Background. Rickets was first described in the 17th century and vitamin D deficiency was recognized as the underlying cause in the early 1900s. Despite this long history, vitamin D deficiency remains a significant health concern. Currently, vitamin D supplementation is recommended in Canada for breast fed infants. There are no recommendations for supplementation in formula-fed infants. Objective. The objective of this report is to bring attention to the risk of severe vitamin D deficiency in high risk, formula fed infants. Design. A retrospective chart review was used to create this clinical case series. Results. Severe vitamin D deficiency was diagnosed in six formula-fed infants over a two-and-a-half year period. All six infants presented with seizures and they resided in First Nation communities located at latitude 54 in the province of Manitoba. While these infants had several risk factors for vitamin D deficiency, they were all receiving cow&#x0027;s milk based formula supplemented with 400 IU/L of vitamin D. Conclusion. This report suggests that current practice with regards to vitamin D supplementation may be inadequate, especially for high-risk infants. Health care professionals providing service to infants in a similar situation should be aware of this preventable condition. Hopefully this would contribute to its prevention, diagnosis and management

    Impact of facial conformation on canine health: Brachycephalic Obstructive Airway Syndrome

    Get PDF
    The domestic dog may be the most morphologically diverse terrestrial mammalian species known to man; pedigree dogs are artificially selected for extreme aesthetics dictated by formal Breed Standards, and breed-related disorders linked to conformation are ubiquitous and diverse. Brachycephaly–foreshortening of the facial skeleton–is a discrete mutation that has been selected for in many popular dog breeds e.g. the Bulldog, Pug, and French Bulldog. A chronic, debilitating respiratory syndrome, whereby soft tissue blocks the airways, predominantly affects dogs with this conformation, and thus is labelled Brachycephalic Obstructive Airway Syndrome (BOAS). Despite the name of the syndrome, scientific evidence quantitatively linking brachycephaly with BOAS is lacking, but it could aid efforts to select for healthier conformations. Here we show, in (1) an exploratory study of 700 dogs of diverse breeds and conformations, and (2) a confirmatory study of 154 brachycephalic dogs, that BOAS risk increases sharply in a non-linear manner as relative muzzle length shortens. BOAS only occurred in dogs whose muzzles comprised less than half their cranial lengths. Thicker neck girths also increased BOAS risk in both populations: a risk factor for human sleep apnoea and not previously realised in dogs; and obesity was found to further increase BOAS risk. This study provides evidence that breeding for brachycephaly leads to an increased risk of BOAS in dogs, with risk increasing as the morphology becomes more exaggerated. As such, dog breeders and buyers should be aware of this risk when selecting dogs, and breeding organisations should actively discourage exaggeration of this high-risk conformation in breed standards and the show ring

    The Surface Waters Acidification Project Palaeolimnology Programme: modern diatom/lake-water chemistry data-set

    Get PDF
    In 1983, when the Surface Waters Acidification Programme (SWAP) was announced, we were asked to design and implement a palaeolimnology sub-project involving scientists from Sweden, Norway, and the UK. Our aim was to reconstruct the acidification history of a range of sites in the three countries and to identify and evaluate the various alternative causes of lake acidification. The results of the project have been published recently (Battarbee et al. 1990, Renberg and Battarbee 1990). Although a comprehensive range of palaeolimnological methods and approaches was used in the study we recognised diatom analysis as central to the entire project. We consequently committed considerable effort to improving our diatom methodology and we were especially concerned with the pursuit of a common approach to diatom taxonomy and pH reconstruction. This effort centred on the creation and analysis of a large data-set of surface-sediment diatom assemblages and associated environmental variables from 170 sites representing the full range of lake types in the acid-sensitive and acidified regions of the three countries

    Added Value Measures in Education Show Genetic as Well as Environmental Influence

    Get PDF
    Does achievement independent of ability or previous attainment provide a purer measure of the added value of school? In a study of 4000 pairs of 12-year-old twins in the UK, we measured achievement with year-long teacher assessments as well as tests. Raw achievement shows moderate heritability (about 50%) and modest shared environmental influences (25%). Unexpectedly, we show that for indices of the added value of school, genetic influences remain moderate (around 50%), and the shared (school) environment is less important (about 12%). The pervasiveness of genetic influence in how and how much children learn is compatible with an active view of learning in which children create their own educational experiences in part on the basis of their genetic propensities

    The correlation between reading and mathematics ability at age twelve has a substantial genetic component

    Get PDF
    Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children’s ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child’s cognitive abilities at age twelve

    Emotional over- and under-eating in early childhood are learned not inherited

    Get PDF
    Emotional overeating (EOE) has been associated with increased obesity risk, while emotional undereating (EUE) may be protective. Interestingly, EOE and EUE tend to correlate positively, but it is unclear whether they reflect different aspects of the same underlying trait, or are distinct behaviours with different aetiologies. Data were from 2054 five-year-old children from the Gemini twin birth cohort, including parental ratings of child EOE and EUE using the Child Eating Behaviour Questionnaire. Genetic and environmental influences on variation and covariation in EUE and EOE were established using a bivariate Twin Model. Variation in both behaviours was largely explained by aspects of the environment completely shared by twin pairs (EOE: C = 90%, 95% CI: 89%-92%; EUE: C = 91%, 95% CI: 90%-92%). Genetic influence was low (EOE: A = 7%, 95% CI: 6%-9%; EUE: A = 7%, 95% CI: 6%-9%). EOE and EUE correlated positively (r = 0.43, p < 0.001), and this association was explained by common shared environmental influences (BivC = 45%, 95% CI: 40%-50%). Many of the shared environmental influences underlying EUE and EOE were the same (rC = 0.50, 95% CI: 0.44, 0.55). Childhood EOE and EUE are etiologically distinct. The tendency to eat more or less in response to emotion is learned rather than inherited
    corecore