652 research outputs found

    Resonant and anti-resonant frequency dependence of the effective parameters of metamaterials

    Full text link
    We present a numerical study of the electromagnetic response of the metamaterial elements that are usedto construct materials with negative refractive index. For an array of split ring resonators (SRR) we find that the resonant behavior of the effective magnetic permeability is accompanied by an anti-resonant behavior of the effective permittivity. In addition, the imaginary parts of the effective permittivity and permeability are opposite in sign. We also observe an identical resonant versus anti-resonant frequency dependence of the effective materials parameters for a periodic array of thin metallic wires with cuts placed periodically along the length of the wire, with roles of the permittivity and permeability reversed from the SRR case. We show in a simple manner that the finite unit cell size is responsible for the anti-resonant behavior

    Electromagnetic-field quantization and spontaneous decay in left-handed media

    Full text link
    We present a quantization scheme for the electromagnetic field interacting with atomic systems in the presence of dispersing and absorbing magnetodielectric media, including left-handed material having negative real part of the refractive index. The theory is applied to the spontaneous decay of a two-level atom at the center of a spherical free-space cavity surrounded by magnetodielectric matter of overlapping band-gap zones. Results for both big and small cavities are presented, and the problem of local-field corrections within the real-cavity model is addressed.Comment: 15 pages, 5 figures, RevTe

    Source and purity of dengue-viral preparations impact requirement for enhancing antibody to induce elevated IL-1β secretion: A primary human monocyte model

    Get PDF
    Dengue virus is a major global health threat and can lead to life-threatening hemorrhagic complications due to immune activation and cytokine production. Cross-reactive antibodies to an earlier dengue virus infection are a recognized risk factor for severe disease. These antibodies bind heterologous dengue serotypes and enhance infection into Fc-receptorbearing cells, a process known as antibody-dependent enhancement of infection. One crucial cytokine seen elevated in severe dengue patients is IL-1β, a potent inflammatory cytokine matured by the inflammasome. We used a highly-physiologic system by studying antibody-dependent enhancement of IL-1β in primary human monocytes with anti-dengue human monoclonal antibodies isolated from patients. Antibody-enhancement increased viral replication in primary human monocytes inoculated with supernatant harvested from Vero cells infected with dengue virus serotype 2 (DENV-2) 16681. Surprisingly, IL-1β secretion induced by infectious supernatant harvested from two independent Vero cell lines was not enhanced by antibody. Secretion of multiple other inflammatory cytokines was also independent of antibody signaling. However, IL-1β secretion did require NLRP3 and caspase- 1 activity. Immunodepletion of dengue virions from the infectious supernatant confirmed that virus was not the main IL-1β-inducing agent, suggesting that a supernatant component(s) not associated with the virion induced IL-1β production. We excluded RNA, DNA, contaminating LPS, viral NS1 protein, complement, and cytokines. In contrast, purified Vero-derived DENV-2 16681 exhibited antibody-enhancement of both infection and IL-1β induction. Furthermore, C6/36 mosquito cells did not produce such an inflammatory component, as crude supernatant harvested from insect cells infected with DENV-2 16681 induced antibody-dependent IL-1β secretion. This study indicates that Vero cells infected with DENV-2 16681 may produce inflammatory components during dengue virus propagation that mask the virus-specific immune response. Thus, the choice of host cell and viral purity should be carefully considered, while insect-derived virus represents a systemthat elicits antibody- dependent cytokine responses to dengue virus with fewer confounding issues

    Model Analysis of Time Reversal Symmetry Test in the Caltech Fe-57 Gamma-Transition Experiment

    Full text link
    The CALTECH gamma-transition experiment testing time reversal symmetry via the E2/M1 mulipole mixing ratio of the 122 keV gamma-line in Fe-57 has already been performed in 1977. Extending an earlier analysis in terms of an effective one-body potential, this experiment is now analyzed in terms of effective one boson exchange T-odd P-even nucleon nucleon potentials. Within the model space considered for the Fe-57 nucleus no contribution from isovector rho-type exchange is possible. The bound on the coupling strength phi_A from effective short range axial-vector type exchange induced by the experimental bound on sin(eta) leads to phi_A < 10^{-2}.Comment: 5 pages, RevTex 3.

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    Розрахунок та проектування окремого фундаменту будівлі на природній ґрунтовій основі. Методичні рекомендації до виконання практичних завдань та курсового проекту з дисципліни «Механіка ґрунтів, основи і фундаменти» сту- дентами напрямів підготовки 6.060101 Будівництво та 6.050301 Гірництво

    Get PDF
    Подано методичні рекомендації до виконання практичних завдань та кур- сового проекту з дисципліни «Механіка ґрунтів, основи і фундаменти» для сту- дентів напрямів підготовки 6.060101 Будівництво та 6.050301 Гірництво. Розглянуто порядок проектування фундаменту будівлі мілкого закладан- ня на природній ґрунтовій основі. Методичні рекомендації передбачають виконання курсового проекту «Розрахунок та проектування окремого фундаменту будівлі на природній ґрун- товій основі» як із викладачем, так і під час самостійної роботи. Можна використовувати також у підготовці курсового та дипломного про- ектування

    Reforming Watershed Restoration: Science in Need of Application and Applications in Need of Science

    Full text link
    corecore