2,951 research outputs found

    In My View

    Get PDF

    Private Multiplicative Weights Beyond Linear Queries

    Full text link
    A wide variety of fundamental data analyses in machine learning, such as linear and logistic regression, require minimizing a convex function defined by the data. Since the data may contain sensitive information about individuals, and these analyses can leak that sensitive information, it is important to be able to solve convex minimization in a privacy-preserving way. A series of recent results show how to accurately solve a single convex minimization problem in a differentially private manner. However, the same data is often analyzed repeatedly, and little is known about solving multiple convex minimization problems with differential privacy. For simpler data analyses, such as linear queries, there are remarkable differentially private algorithms such as the private multiplicative weights mechanism (Hardt and Rothblum, FOCS 2010) that accurately answer exponentially many distinct queries. In this work, we extend these results to the case of convex minimization and show how to give accurate and differentially private solutions to *exponentially many* convex minimization problems on a sensitive dataset

    The impact of sound field systems on learning and attention in elementary school classrooms

    Get PDF
    Purpose: An evaluation of the installation and use of sound field systems (SFS) was carried out to investigate their impact on teaching and learning in elementary school classrooms. Methods: The evaluation included acoustic surveys of classrooms, questionnaire surveys of students and teachers and experimental testing of students with and without the use of SFS. Students ’ perceptions of classroom environments and objective data evaluating change in performance on cognitive and academic assessments with amplification over a six month period are reported. Results: Teachers were positive about the use of SFS in improving children’s listening and attention to verbal instructions. Over time students in amplified classrooms did not differ from those in nonamplified classrooms in their reports of listening conditions, nor did their performance differ in measures of numeracy, reading or spelling. Use of SFS in the classrooms resulted in significantly larger gains in performance in the number of correct items on the nonverbal measure of speed of processing and the measure of listening comprehension. Analysis controlling for classroom acoustics indicated that students ’ listening comprehension score

    Laboratory Determination of the Infrared Band Strengths of Pyrene Frozen in Water Ice: Implications for the Composition of Interstellar Ices

    Get PDF
    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 microns) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H2O and D2O ices. The D2O mixtures are used to measure pyrene bands that are masked by the strong bands of H2O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 microns. Our infrared band strengths were normalized to experimentally determined ultraviolet band strengths, and we find that they are generally ~50% larger than those reported by Bouwman et al. based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. to estimate the contribution of frozen PAHs to absorption in the 5-8 micron spectral region, taking into account the strength of the 3.25 micron CH stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the cosmic carbon budget, and account for 2%-9% of the unidentified absorption in the 5-8 micron region.Comment: Accepted for publication in ApJ on 14 Feb 201

    Experimental Investigation of a 16-inch Impulse-type Supersonic-compressor Rotor

    Get PDF
    Performance data and characteristics of a 16-inch impulse-type supersonic-compressor rotor are presented. The experimental portion of this investigation was conducted in Freon-12. A peak pressure ratio of 3.6 was obtained with an adiabatic efficiency of 0.80 at design conditions. Performance was continuous from impulse operation, at open throttle, to shock-in-rotor operation at the stall condition

    Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS

    Get PDF
    Actinic flux, as well as aerosol chemical and optical properties, were measured aboard the NASA DC-8 aircraft during the ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) mission in Spring and Summer 2008. These measurements were used in a radiative transfer code to retrieve spectral (350-550 nm) aerosol single scattering albedo (SSA) for biomass burning plumes encountered on 17 April and 29 June. Retrieved SSA values were subsequently used to calculate the absorption Angstrom exponent (AAE) over the 350-500 nm range. Both plumes exhibited enhanced spectral absorption with AAE values that exceeded 1 (6.78 ± 0.38 for 17 April and 3.34 ± 0.11 for 29 June). This enhanced absorption was primarily due to organic aerosol (OA) which contributed significantly to total absorption at all wavelengths for both 17 April (57.7%) and 29 June (56.2%). OA contributions to absorption were greater at UV wavelengths than at visible wavelengths for both cases. Differences in AAE values between the two cases were attributed to differences in plume age and thus to differences in the ratio of OA and black carbon (BC) concentrations. However, notable differences between AAE values calculated for the OA (AAEOA) for 17 April (11.15 ± 0.59) and 29 June (4.94 ± 0.19) suggested differences in the plume AAE values might also be due to differences in organic aerosol composition. The 17 April OA was much more oxidized than the 29 June OA as denoted by a higher oxidation state value for 17 April (+0.16 vs. -0.32). Differences in the AAEOA, as well as the overall AAE, were thus also possibly due to oxidation of biomass burning primary organic aerosol in the 17 April plume that resulted in the formation of OA with a greater spectral-dependence of absorption. © Author(s) 2012. CC Attribution 3.0 License

    Precedence-constrained scheduling problems parameterized by partial order width

    Full text link
    Negatively answering a question posed by Mnich and Wiese (Math. Program. 154(1-2):533-562), we show that P2|prec,pj∈{1,2}p_j{\in}\{1,2\}|Cmax⁥C_{\max}, the problem of finding a non-preemptive minimum-makespan schedule for precedence-constrained jobs of lengths 1 and 2 on two parallel identical machines, is W[2]-hard parameterized by the width of the partial order giving the precedence constraints. To this end, we show that Shuffle Product, the problem of deciding whether a given word can be obtained by interleaving the letters of kk other given words, is W[2]-hard parameterized by kk, thus additionally answering a question posed by Rizzi and Vialette (CSR 2013). Finally, refining a geometric algorithm due to Servakh (Diskretn. Anal. Issled. Oper. 7(1):75-82), we show that the more general Resource-Constrained Project Scheduling problem is fixed-parameter tractable parameterized by the partial order width combined with the maximum allowed difference between the earliest possible and factual starting time of a job.Comment: 14 pages plus appendi

    Medium-separation binaries do not affect the first steps of planet formation

    Full text link
    The first steps of planet formation are marked by the growth and crystallization of sub-micrometer-sized dust grains accompanied by dust settling toward the disk midplane. In this paper we explore whether the first steps of planet formation are affected by the presence of medium-separation stellar companions. We selected two large samples of disks around single and binary T Tauri stars in Taurus that are thought to have only a modest age spread of a few Myr. The companions of our binary sample are at projected separations between 10 and 450 AU with masses down to about 0.1 solar masses. We used the strength and shape of the 10 micron silicate emission feature as a proxy for grain growth and for crystallization respectively. The degree of dust settling was evaluated from the ratio of fluxes at two different mid-infrared wavelengths. We find no statistically significant difference between the distribution of 10 micron silicate emission features from single and binary systems. In addition, the distribution of disk flaring is indistinguishable between the single and binary system samples. These results show that the first steps of planet formation are not affected by the presence of a companion at tens of AU.Comment: To appear in the Astrophysical Journa

    The Hardness of Embedding Grids and Walls

    Full text link
    The dichotomy conjecture for the parameterized embedding problem states that the problem of deciding whether a given graph GG from some class KK of "pattern graphs" can be embedded into a given graph HH (that is, is isomorphic to a subgraph of HH) is fixed-parameter tractable if KK is a class of graphs of bounded tree width and W[1]W[1]-complete otherwise. Towards this conjecture, we prove that the embedding problem is W[1]W[1]-complete if KK is the class of all grids or the class of all walls
    • 

    corecore