research

The Hardness of Embedding Grids and Walls

Abstract

The dichotomy conjecture for the parameterized embedding problem states that the problem of deciding whether a given graph GG from some class KK of "pattern graphs" can be embedded into a given graph HH (that is, is isomorphic to a subgraph of HH) is fixed-parameter tractable if KK is a class of graphs of bounded tree width and W[1]W[1]-complete otherwise. Towards this conjecture, we prove that the embedding problem is W[1]W[1]-complete if KK is the class of all grids or the class of all walls

    Similar works