188 research outputs found
Effect of cadence selection on peak power and time of power production in elite BMX riders; a laboratory based study.
The aims of this study were to analyse the optimal cadence for peak power production and time to peak power in bicycle motocross (BMX) riders. Six male elite BMX riders volunteered for the study. Each rider completed 3 maximal sprints at a cadence of 80, 100, 120 and 140revs·min-1 on a laboratory Schoberer Rad Messtechnik (SRM) cycle ergometer in isokinetic mode. The riders’ mean values for peak power and time of power production in all three tests were recorded. The BMX riders produced peak power (1105±139W) at 100revs·min-1 with lower peak power produced at 80revs:min-1 (1060±69W, (F(2,15)=3.162; p=.266; η2 =0.960), 120revs·min-1 (1077±141W, (F(2,15)=4.348; p=.203; η2 =0.970) and 140revs·min-1 (1046±175W, (F(2,15)=12.350; p=0.077; η2 =0.989). The shortest time to power production was attained at 120revs·min-1 in 2.5±1.07s. Whilst a cadence of 80revs:min-1 (3.5±0.8s, (F(2,15)=2.667; p=.284; η2 =0.800) 100revs:min-1 (3.00±1.13s, (F(2,15)=24.832; p=.039; η2 =0.974) and 140revs:min-1 (3.50±0.88s, (F(2,15)=44.167; p=.006; η2 =0.967)) all recorded a longer time to peak power production. The results indicate that the optimal cadence for producing peak power output and reducing the time to peak power output are attained at comparatively low cadences for sprint cycling events. These findings could potentially inform strength and conditioning training to maximise dynamic force production and enable coaches to select optimal gear ratios
Do advanced mathematics skills predict success in biology and chemistry degrees?
The mathematical preparedness of science undergraduates has been a subject of debate for some time. This paper investigates the relationship between school mathematics attainment and degree outcomes in biology and chemistry across England, a much larger scale of analysis than has hitherto been reported in the literature. A unique dataset which links the National Pupil Database for England (NPD) and Higher Education Statistics Agency (HESA) data is used to track the educational trajectories of a national cohort of 16-year-olds through their school and degree programmes. Multilevel regression models indicate that students who completed advanced mathematics qualifications prior to their university study of biology and chemistry were no more likely to attain the best degree outcomes than those without advanced mathematics. The models do, however, suggest that success in advanced chemistry at school predicts outcomes in undergraduate biology and vice versa. There are important social background differences and the impact of the university attended is considerable. We discuss a range of possible explanations of these findings
Primates in peril: the significance of Brazil, Madagascar, Indonesia and the Democratic Republic of the Congo for global primate conservation
Primates occur in 90 countries, but four—Brazil, Madagascar, Indonesia, and the Democratic Republic of the Congo (DRC)—harbor 65% of the world’s primate species (439) and 60% of these primates are Vulnerable, Endangered, or Critically Endangered (IUCN Red List of Threatened Species 2017-3). Considering their importance for global primate conservation, we examine the anthropogenic pressures each country is facing that place their primate populations at risk. Habitat loss and fragmentation are main threats to primates in Brazil, Madagascar and Indonesia. However, in DRC hunting for the commercial bushmeat trade is the primary threat. Encroachment on primate habitats driven by local and global market demands for food and non-food commodities hunting, illegal trade, the proliferation of invasive species, and human and domestic-animal borne infectious diseases cause habitat loss, population declines, and extirpation. Modeling agricultural expansion in the 21st century for the four countries under a worst-case-scenario, showed a primate range contraction of 78% for Brazil, 72% for Indonesia 62% for Madagascar and 32% for DRC. These pressures unfold in the context of expanding human populations with low levels of development. Weak governance across these four countries may limit effective primate conservation planning. We examine landscape and local approaches to effective primate conservation policies and assess the distribution of protected areas and primates in each country. P rimates in Brazil and Madagascar have 38% of their range inside protected areas, 17% in Indonesia and 14% in DRC, suggesting that the great majority of primate populations remain vulnerable. We list the key challenges faced by the four countries to avert primate extinctions now and in the future. In the short term, effective law enforcement to stop illegal hunting and illegal forest destruction is absolutely key. Long-term success can only be achieved by focusing local and global public awareness, actively engaging with international organizations, multinational businesses and consumer nations to reduce unsustainable demands on the environment. Finally, the four primate range states need to ensure that integrated, sustainable land-use planning for economic development includes the maintenance of biodiversity and intact, functional natural ecosystems
Community ecology of the Middle Miocene primates of La Venta, Colombia: the relationship between ecological diversity, divergence time, and phylogenetic richness
It has been suggested that the degree of ecological diversity that characterizes a primate community correlates positively with both its phylogenetic richness and the time since the members of that community diverged (Fleagle and Reed in Primate communities. Cambridge University Press, New York, pp 92–115, 1999). It is therefore questionable whether or not a community with a relatively recent divergence time but high phylogenetic richness would be as ecologically variable as a community with similar phylogenetic richness but a more distant divergence time. To address this question, the ecological diversity of a fossil primate community from La Venta, Colombia, a Middle Miocene platyrrhine community with phylogenetic diversity comparable with extant platyrrhine communities but a relatively short time since divergence, was compared with that of modern Neotropical primate communities. Shearing quotients and molar lengths, which together are reliable indicators of diet, for both fossil and extant species were plotted against each other to describe the dietary “ecospace” occupied by each community. Community diversity was calculated as the area of the minimum convex polygon encompassing all community members. The diversity of the fossil community was then compared with that of extant communities to test whether the fossil community was less diverse than extant communities while taking phylogenetic richness into account. Results indicate that the La Ventan community was not significantly less ecologically diverse than modern communities, supporting the idea that ecological diversification occurred along with phylogenetic diversification early in platyrrhine evolution
The range of the golden-mantle tamarin, Saguinus tripartitus (Milne Edwards, 1878): distributions and sympatry of four tamarin species in Colombia, Ecuador, and northern Peru
A detailed understanding of the range of the golden-mantle tamarin, Saguinus tripartitus (Milne Edwards, 1878), in Amazonian Peru and Ecuador is of particular relevance, not only because it is poorly known but also because it was on the basis of its supposed sympatry with the saddleback tamarin (S. fuscicollis lagonotus) that Thorington (Am J Primatol 15:367–371, 1988) argued that it is a distinct species rather than a saddleback tamarin subspecies, as was believed by Hershkovitz (Living new world monkeys, vol I. The University of Chicago Press, Chicago, 1977). A number of surveys have been carried out since 1988 in the supposed range of S. tripartitus, in both Ecuador and Peru. Here we summarize and discuss these issues and provide a new suggestion for the geographic range of this species; that is, between the ríos Napo and Curaray in Peru and extending east into Ecuador. We also review current evidence for the distributions of Spix’s black-mantle tamarin (S. nigricollis nigricollis), Graells’ black-mantle tamarin (S. n. graellsi), and the saddleback tamarin (S. fuscicollis lagonotus), which are also poorly known, and examine the evidence regarding sympatry between them. We conclude that despite the existence of a number of specimens with collecting localities that indicate overlap in their geographic ranges, the fact that the four tamarin species are of similar size and undoubtedly very similar in their feeding habits militates strongly against the occurrence of sympatry among them
Ancient DNA of the Pygmy Marmoset Type Specimen \u3cem\u3eCebuella pygmaea\u3c/em\u3e (Spix, 1823) Resolves a Taxonomic Conundrum
The pygmy marmoset, the smallest of the anthropoid primates, has a broad distribution in Western Amazonia. Recent studies using molecular and morphological data have identified two distinct species separated by the Napo and Solimões-Amazonas rivers. However, reconciling this new biological evidence with current taxonomy, i.e., two subspecies, Cebuella pygmaea pygmaea (Spix, 1823) and Cebuella pygmaea niveiventris (Lönnberg, 1940), was problematic given the uncertainty as to whether Spix’s pygmy marmoset (Cebuella pygmaea pygmaea) was collected north or south of the Napo and Solimões-Amazonas rivers, making it unclear to which of the two newly revealed species the name pygmaea would apply. Here, we present the first molecular data from Spix’s type specimen of Cebuella pygmaea, as well as novel mitochondrial genomes from modern pygmy marmosets sampled near the type locality (Tabatinga) on both sides of the river. With these data, we can confirm the correct names of the two species identified, i.e., C. pygmaea for animals north of the Napo and Solimões-Amazonas rivers and C. niveiventris for animals south of these two rivers. Phylogenetic analyses of the novel genetic data placed into the context of cytochrome b gene sequences from across the range of pygmy marmosets further led us to re-evaluate the geographical distribution for the two Cebuella species. We dated the split of these two species to 2.54 million years ago. We discuss additional, more recent, subdivisions within each lineage, as well as potential contact zones between the two species in the headwaters of these rivers
- …