| 1           | Community Ecology of the Middle Miocene Primates of La Venta,                                  |
|-------------|------------------------------------------------------------------------------------------------|
| 2           | Colombia: the Relationship between Ecological Diversity, Divergence                            |
| 3           | Time, and Phylogenetic Richness                                                                |
| 4           |                                                                                                |
| 5<br>6<br>7 | The final publication is available at Springer via http://dx.doi.org/10.1007/s10764-010-9419-1 |
| 8           | Brandon C. Wheeler                                                                             |
| 9           | Interdepartmental Doctoral Program in Anthropological Sciences                                 |
| 10          | Stony Brook University                                                                         |
| 11          | Stony Brook, NY 11794-4364 USA                                                                 |
| 12          | Phone: 1-631-675-6412                                                                          |
| 13          | Fax: 1-631-632-9165                                                                            |
| 14          | E-mail: bcwheeler43@gmail.com                                                                  |
| 15          |                                                                                                |
| 16          |                                                                                                |
| 17          | Size of the manuscript:                                                                        |
| 18          | Word count (whole file): 4,622                                                                 |
| 19          | Word count abstract: 229                                                                       |
| 20          | 3 tables & 8 figures                                                                           |
| 21          |                                                                                                |
| 22          | Originally submitted to Primates on July 15, 2009                                              |
| 23          | Revision submitted on November 26, 2009                                                        |
| 24          |                                                                                                |

### 27 Abstract

It has been suggested that the degree of ecological diversity that characterizes a primate community correlates positively with both its phylogenetic richness

and the time since the members of that community diverged (Fleagle and Reed 1999). It is 30 therefore questionable whether or not a community with a relatively recent divergence time 31 but high phylogenetic richness would be as ecologically variable as a community with 32 similar phylogenetic richness but a more distant divergence time. To address this question, 33 the ecological diversity of a fossil primate community from La Venta, Colombia, a Middle 34 Miocene platyrrhine community with phylogenetic diversity comparable to extant 35 platyrrhine communities but a relatively short time since divergence, was compared with 36 that of modern neotropical primate communities. Shearing quotients and molar lengths, 37 which together are reliable indicators of diet, for both fossil and extant species were plotted 38 against each other to describe the dietary "ecospace" occupied by each community. 39 Community diversity was calculated as the area of the minimum convex polygon 40 encompassing all community members. The diversity of the fossil community was then 41 compared to that of extant communities to test if the fossil community was less diverse 42 than extant communities while taking phylogenetic richness into account. Results indicate 43 that the La Ventan community was not significantly less ecologically diverse than modern 44 communities, supporting the idea that ecological diversification occurred along with 45 46 phylogenetic diversification early in platyrrhine evolution.

47

48 Key words: New World monkeys; Ecospace; Primate communities; Dietary diversity;

49 Primate evolution

#### 51 Introduction

52

Studies of primate communities over the past decade have used multivariate "ecospace" 53 to describe the ecological diversity that characterizes a given community (e.g., Fleagle and Reed 54 1996; Godfrey et al. 1997; Gilbert 2005; see also Novack-Gottshall 2007). A community's 55 ecospace can be defined as the space it takes up on multivariate axes which represent a variety of 56 ecological variables (including diet, locomotor and positional behavior, activity pattern, and 57 body size) and describe the niche of each species present in the community (see Fleagle and 58 59 Reed 1996). Such analyses have demonstrated a positive relationship between the ecological diversity of a primate community and the degree of phylogenetic richness in that community 60 (Fleagle and Reed 1999). Similarly, primate communities whose members share a more ancient 61 common ancestor tend to be more diverse than those communities whose members share a more 62 recent ancestor (Fleagle and Reed 1999). Specifically, Neotropical primate communities, whose 63 members diverged relatively recently (20 Ma) (Hodgson et al. 2009), are much less ecologically 64 diverse than Old World primate communities (Fleagle and Reed 1999), whose members share a 65 more ancient common ancestor (80-90 Ma for African and Asian communities: Eizirik et al. 66

67 2004; 40 to 65 Ma for the Malagasy communities: Yoder and Yang 2004).

To date, studies correlating ecological diversity in primate communities with either phylogenetic diversity or time since divergence have not compared the ecological variation of fossil primate communities with that of living communities. Such a comparison is especially apt when examining the affect divergence time has on platyrrhine communities because there is little variation in average time since divergence among most New World primate communities due to the fact that most modern subfamilies appeared relatively early in platyrrhine evolution

74 (Rosenberger et al. 2009). The fossil community from La Venta, Colombia (see Fleagle et al. 1997) demonstrates a degree of phylogenetic richness (i.e., number of taxa) comparable to 75 modern communities (Rosenberger et al. 2009), with many taxa attributable to extant subfamilies 76 (Fig. 1), yet with a time since divergence roughly one third that of modern platyrrhines. The 77 positive relationship between ecological diversity and divergence time of primate communities 78 (Fleagle and Reed 1999) predicts that the fossil primate community at La Venta would be less 79 ecologically diverse than modern platyrrhine communities. However, because the phylogenetic 80 richness of the primate community from La Venta is comparable to many modern platyrrhine 81 communities, it is questionable whether the degree of diversity of the La Ventan primates would 82 be less than that of modern primate communities with a similar degree of phylogenetic diversity, 83 despite their shorter divergence time. 84

This study addresses this question by first examining how phylogenetic richness affects 85 ecological diversity (as determined by variation in dental measurements related to diet and body 86 size) in modern neotropical communities. The degree of ecological diversity of the La Ventan 87 fauna is then compared to that of the modern communities while taking the number of taxa 88 present in the community into account. It was predicted that modern communities with greater 89 phylogenetic richness would be more ecologically variable than less rich communities, and that 90 the La Ventan community would be less ecologically diverse than modern communities given its 91 degree of phylogenetic richness. This comparison of the La Ventan fossil community to modern 92 communities provides insight into whether ecological diversity has remained relatively static 93 since the divergence of the major extant platyrrhine clades, or if ecological diversity continued to 94 increase even after the initial adaptive radiation. 95

# Methods

98

| 99  | Diversity in the dietary ecology of the Middle Miocene fossil primate community at La              |
|-----|----------------------------------------------------------------------------------------------------|
| 100 | Venta (see Kay and Madden 1997 for details regarding the paleoecology of La Venta) is here         |
| 101 | compared to that of nine modern neotropical primate communities (fig. 2, table 1). Extant          |
| 102 | communities were chosen such that a range of degrees phylogenetic diversity would be               |
| 103 | represented (see table 1 for a list of all species present at each site). The fossil community was |
| 104 | limited to the five primate species associated with the La Ventan "Monkey Beds" sedimentary        |
| 105 | deposits (including <u>Aotus dindensis</u> , Cebupithecia sarmientoi, Mohanamico hershkovitzi,     |
| 106 | Neosaimiri fieldsi, and Stirtonia tatacoensis) (Fleagle et al., 1997; Hartwig and Meldrum, 2002)   |
| 107 | plus the one species found in deposits both above and below the Monkey Beds (Patasola              |
| 108 | magdalenae). Micodon kiotensis is also associated with the Monkey Beds but was not included        |
| 109 | as a member of the fossil community because the limited fossil remains of this genus do not        |
| 110 | allow for detailed analysis regarding its ecology (Rosenberger et al. 2009) and the specimens      |
| 111 | ascribed to this genus may actually be deciduous teeth of another La Ventan primate species        |
| 112 | such as Neosaimiri (Fleagle et al. 1997; Fleagle pers. comm.). The Monkey Beds date to slightly    |
| 113 | less than 13 Ma (Madden et al. 1997; Flynn et al. 1997; but see Takemura et al. 1992 for slightly  |
| 114 | older dates for younger La Ventan deposits) and are thought to represent a short enough period     |
| 115 | of time (approximately 15 ky; Kay and Madden 1997) that it is likely that the species found in     |
| 116 | this deposit co-existed.                                                                           |
| 117 | Ecological diversity was determined through analysis of variation in shearing quotients            |
| 118 | (SQ) and length of the lower first molar $(M_1)$ , which respectively are indicative of diet (Kay  |
| 119 | 1975) and body size (Gingerich et al. 1982). Shearing quotients are a measure of the               |

development of the molar shearing crests; low (negative) SQ values indicate rounded molar

121 cusps and are associated with largely frugivorous diets while high (positive) values indicate high-crested molars and are associated with largely folivorous (at large body sizes) or 122 insectivorous (at small body sizes) diets (see Kay 1975; Ungar and Kay 1995). These 123 measurements have been published for both fossil and extant taxa (Anthony and Kay 1993; 124 Fleagle et al. 1997; Meldrum and Kay 1997; Currie Ketchum 2002) and are perhaps the only 125 diet-related variables that are measurable for all species concerned, given that some fossil taxa 126 are represented exclusively by dental remains. Measurements are species averages (see table 2 127 for values of all measurements used) and were not measured for the specific populations used in 128 129 this study. The  $M_1$  length and SQ for each species were plotted against each other on a bivariate plot 130 to determine the dietary "ecospace" occupied by each primate assemblage (fig. 3). Following 131

132 Fleagle and Reed (1996), ecological diversity for each community was calculated as the area of

the minimum convex polygon (MCP) that encompasses the position of all species of that

134 community on the bivariate plot. MCPs were made from bivariate scatter plots made in

135 Microsoft Excel. The scale of each plot was standardized (as in fig. 3) so that the MCP area for

each community was directly comparable to those of all other communities. MCP areas were

137 calculated by importing each plot into Adobe Illustrator 12.0, dividing each MCP into multiple

138 triangles, and summing the areas of all constituting triangles. One mm of M1 length was given a

139 value of 3.175 cm in Adobe Illustrator, while 10 SQ units were given a value of 2.25 cm

Phylogenetic diversity for each community was measured using three methods: 1) the
number of species, 2) the number of genera, and 3) the number of subfamilies which make up the
community. Traditional (conservative) species designations were used following Fleagle (1999).
Based on Schneider (in Schneider and Rosenberger 1996), the following five subfamilies of

extant platyrrhines were recognized for the current study: Callitrichinae, Aotinae, Cebinae, 144 Atelinae, and Pitheciinae. Some researchers break the Platyrrhini down into additional (smaller) 145 groups, but only these five subfamilies were used because they are now widely accepted as 146 natural groupings (reviewed in Rylands et al. 2000; Rylands and Mittermeier 2009). The six 147 fossil taxa constituting the Miocene community were considered to be stem or crown members 148 of these subfamilies (fig. 1). Based on Fleagle and Kay (1997), Cebupithecia sarmientoi is 149 placed within the Pitheciinae and Patasola magdalenae is placed with the Callitrichinae. Based 150 on Rosenberger et al. (2009), *Aotus dindensis* is placed within the Aotinae, *Neosaimiri fieldsi* is 151 152 placed within the Cebinae, Stirtonia tatacoensis is placed within the Atelinae, and Mohanamico hershkovitzi is placed within the Callitrichinae. It should be noted that the status of Mohanamico 153 is disputed, with Kay (1990) arguing that it is likely a pithecine. However, whether one places 154 this species within the callitrichines or the pithecines does not affect the current analysis because 155 it does not change the number of species, genera, or subfamilies present in the Monkey Beds 156 community. 157

158

159 Statistical Analyses

160

161 To examine the relationship between phylogenetic and ecological diversity, a linear 162 regression was used to test if each of the three measures of phylogenetic richness (i.e., number of 163 species, genera, and subfamilies) was a significant predictor of ecological diversity in the extant 164 communities. The area of the MCP of the La Ventan community was then compared to that of 165 the extant communities, taking into account each measure of phylogenetic richness which was 166 significant in the regressions. This was tested by measuring the vertical distance to the regression

| 167 | line (i.e., the residual) on the plot of MCP area against phylogenetic richness for each of the                                                                                     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 168 | extant communities (fig. 4); a positive value was given to those points above the regression line                                                                                   |
| 169 | and a negative value to those below. The La Ventan community was then superimposed on the                                                                                           |
| 170 | graph (based on its MCP area and phylogenetic richness) and its vertical distance from the                                                                                          |
| 171 | regression line was measured. A special case t-test for comparing a single specimen against a                                                                                       |
| 172 | sample (Sokal and Rohlf 1995) was then used to test if the residual of the La Ventan community                                                                                      |
| 173 | differed significantly from those of the extant communities. Such a method allows for a test of                                                                                     |
| 174 | whether or not the La Ventan community was less diverse while taking phylogenetic richness                                                                                          |
| 175 | into account. Linear regressions were conducted using SPSS 15.0. The special case t-tests were                                                                                      |
| 176 | conducted by hand.                                                                                                                                                                  |
| 177 |                                                                                                                                                                                     |
| 178 | Results                                                                                                                                                                             |
| 179 |                                                                                                                                                                                     |
| 180 | Among extant communities, ecological diversity (as measured by MCP area) varied                                                                                                     |
| 181 | considerably (Table 3) and was positively associated with each measure of phylogenetic                                                                                              |
| 182 | richness. Each of the number of species (n=9, $\frac{R^2=0.537}{P}$ , p=0.025; fig. 5), the number of genera                                                                        |
| 183 | $(n=9, \frac{R^2=0.564, p=0.020}{R^2=0.597, p=0.015}; \text{ fig. 6}), \text{ and the number of subfamilies } (n=9, \frac{R^2=0.597, p=0.015}{R^2=0.597, p=0.015}; \text{ fig. 7})$ |
| 184 | were significant predictors of the area of the MCPs. When the La Ventan community is                                                                                                |
| 185 | superimposed onto these plots, it consistently falls below the regression line (figs. 5-7).                                                                                         |
| 186 | However, the degree to which the La Ventan community falls below the regression line is not                                                                                         |
| 187 | significantly different from that of the extant communities, regardless of how phylogenetic                                                                                         |
| 188 | richness was measured (number of species: t=-0.167, df=8, p>0.90; number of genera: t=-0.463,                                                                                       |
| 189 | df=8, p>0.90; number of subfamilies: t=-1.567, df=8, p>0.10).                                                                                                                       |
|     |                                                                                                                                                                                     |

**Discussion** 

| 193 | As expected, the greatest diversity in dietary ecospace as measured by the area of the                         |
|-----|----------------------------------------------------------------------------------------------------------------|
| 194 | MCP was found in communities with the greatest degree of phylogenetic richness. This                           |
| 195 | relationship held whether phylogenetic richness was defined as the number of species, number of                |
| 196 | genera, or number of subfamilies present in a given community. Differences in ecological                       |
| 197 | diversity between the La Ventan fossil community and modern communities, however, were not                     |
| 198 | significant. It thus seems that much of the ecological diversity that characterizes extant                     |
| 199 | Neotropical primate communities occurred early in the adaptive radiation of modern platyrrhines                |
| 200 | (i.e., from 20 to 13 Ma) and that phylogenetic richness explains the degree of ecological diversity            |
| 201 | that characterizes platyrrhine communities to a greater extent than does the time elapsed since                |
| 202 | the members of that community diverged (see Fleagle and Reed 1999).                                            |
| 203 | Despite the lack of a significant difference, it appears that some expansion in dietary                        |
| 204 | ecospace has occurred among New World primates over the last 13 million years (fig. 8). This                   |
| 205 | increase is related to both greater diversity in M <sub>1</sub> lengths among extant platyrrhines and a slight |
| 206 | increase in SQs at both small and large body size, with the species of La Venta having lower SQs               |
| 207 | than many of their extant relatives. This may be indicative of an increased reliance on insectivory            |
| 208 | and folivory in some modern taxa relative to the species of the fossil community. However, Kay                 |
| 209 | and Ungar (1997) found that although SQs of some Miocene catarrhines were low relative to                      |
| 210 | their modern relatives, dental microwear indicated that the Miocene fauna were as folivorous as                |
| 211 | modern catarrhines with relatively high SQs. The authors argued that this may be an example of                 |
| 212 | the "Red Queen effect" (see Van Valen 1973), in which these folivorous taxa became better                      |
| 213 | adapted to the niche they already occupied as a means to compete with other contemporaneous                    |

folivores. It is possible that a similar phenomenon occurred in the course of platyrrhine 214 evolution; studies of microscopic dental wear in these fossil species would provide insight in this 215 regard. In addition to an increase in SOs, some of the expansion of ecospace that has taken place 216 over the last 13 million years is the result of a greater diversity of  $M_1$  lengths among extant taxa 217 relative to the species of the La Ventan Monkey Beds. If relatively recent platyrrhine 218 communities, such as those which included Protopithecus and Caipora, were included among 219 modern communities, the dietary ecospace would be considerably larger, as these taxa are up to 220 twice the size of any modern New World primate (MacPhee and Horovitz 2002; Rosenberger et 221 222 al. 2009).

Finally, the lack of a significant difference between La Venta and the extant communities 223 may be due to a type II error. It is possible that if other fossil platyrrhine communities dating to 224 the Middle Miocene were available for examination, a significant difference in ecological 225 diversity between the extinct and extant communities could be found. However, because of the 226 dearth of known fossil platyrrhine communities, this is not possible to test. Results may also 227 change if additional discoveries increase the number of taxa known from the Monkey Beds or 228 what we know about the ecology of the taxa already described. Indeed, a number of additional 229 taxa, including Lagonimico, Nuciruptor, Stirtonia victoriae (Fleagle et al. 1997), and 230 *Miocallicebus* (Takai et al. 2001) have been found in other La Ventan deposits and may 231 eventually be known from the Monkey Beds, although their addition to the fossil community 232 would not necessarily change the results or conclusion of the current study. Among the species 233 known from other layers, lower dentition is available for three (*Lagonimico, Nuciruptor*, 234 Stirtonia victoriae; Fleagle et al., 1997; Meldrum & Kay 1997. While their addition would 235 indeed add somewhat to the fossil community's MCP area, this would also add to its 236

| 237 | phylogenetic richness. Whether or not these species should be considered members of the fossil   |
|-----|--------------------------------------------------------------------------------------------------|
| 238 | community awaits further fossil discoveries.                                                     |
| 239 |                                                                                                  |
| 240 | Acknowledgements                                                                                 |
| 241 |                                                                                                  |
| 242 | Carolyn Currie Ketchum graciously sent me many of the dental measurements used in this study     |
| 243 | prior to finishing her thesis, for which I am very much appreciative. Anthony Olejniczak         |
| 244 | provided statistical advice. I also thank John Fleagle, Christopher Gilbert, Kristina Hogg, Bill |
| 245 | Jungers, and Biren Patel for helpful discussion. Pablo Stevenson provided sources for species    |
| 246 | compositions of extant communities. John Fleagle and two anonymous reviewers provided            |
| 247 | helpful comments on a previous version of this manuscript.                                       |
| 248 |                                                                                                  |
| 249 | References                                                                                       |
| 250 |                                                                                                  |
| 251 | Anthony MRL, Kay RF (1993) Tooth form and diet in ateline and alouattine primates:               |
| 252 | reflections on the comparative method. Am J Sci 293A:356-382.                                    |
| 253 | Aquino R (1978) La fauna primatológica en áreas de Jenaro Herrera. Proyecto de Asentamiento      |
| 254 | Rural Integral en Jenaro Herrera, Boletín Tecnico 1:1-20                                         |
| 255 | Currie Ketchum C (2002) Mandibular and dental measurements as predictors of diet in extant       |
| 256 | and fossil platyrrhines. Master's Thesis, Arizona State University.                              |
| 257 | Eizirik E, Murphy WJ, Springer MS, O'Brien SJ (2004) Molecular phylogeny and dating of           |
| 258 | early primate divergences. In: Ross CF, Kay RF (eds) Anthropoid origins: new visions.            |
| 259 | Kluwer Academic, New York, pp 45-64                                                              |

| 260 | Fishkind AS, Sussman RW (1987) Preliminary survey of the primates of the Zona Protectora and   |
|-----|------------------------------------------------------------------------------------------------|
| 261 | La Selva Biological Station, Northeast Costa Rica. Primate Conserv 8:63-66                     |
| 262 | Fleagle JG (1999) Primate adaptation and evolution. Academic Press, San Diego                  |
| 263 | Fleagle JG, Kay R (1997) Platyrrhines, catarrhines, and the fossil record. In: Kinzey WG (ed)  |
| 264 | New World primates: ecology, evolution and behavior. Aldine de Gruyter, New York, pp           |
| 265 | 3–24                                                                                           |
| 266 | Fleagle JG, Kay RF, Anthony MRL (1997) Fossil New World monkeys. In: Kay RF, Madden            |
| 267 | RH, Cifelli RL, Flynn JJ (eds) Vertebrate paleontology in the Neotropics: the Miocene          |
| 268 | fauna of La Venta, Colombia. Smithsonian Institution Press, Washington, D.C., pp 473-          |
| 269 | 495                                                                                            |
| 270 | Fleagle JG, Reed KE (1996) Comparing primate communities: a multivariate approach. J Hum       |
| 271 | Evol 30:489-510                                                                                |
| 272 | Fleagle JG, Reed KE (1999) Phylogenetic and temporal perspectives on primate ecology. In:      |
| 273 | Fleagle JG, Janson C, Reed KE (eds) Primate communities. Cambridge University Press,           |
| 274 | New York, pp 92-115                                                                            |
| 275 | Flynn J, Guerrero J, Swisher C (1997) Geochronology of the Honda Group. In: Kay RF, Madden     |
| 276 | RH, Cifelli RL, Flynn JJ (eds) Vertebrate paleontology in the Neotropics: the Miocene          |
| 277 | fauna of La Venta, Colombia. Smithsonian Institution Press, Washington, D.C., pp 44-59         |
| 278 | Gilbert CC (2005) Dietary ecospace and the diversity of euprimates during the Early and Middle |
| 279 | Eocene. Am J Phys Anth 126:237-249                                                             |
| 280 | Gingerich PD, Smith BH, Rosenberg K (1982) Allometric scaling in the dentition of primates     |
| 281 | and prediction of body weight from tooth size in fossils. Am J Phys Anth 58:81-100             |
| 282 | Glanz WE (1990) Neotropical mammal densities: how unusual is the community on Barro            |

| 283 | Colorado Island, Panama. In: Gentry AH (ed) Four Neotropical Rainforests. Yale               |
|-----|----------------------------------------------------------------------------------------------|
| 284 | University Press, New York, pp 287-313                                                       |
| 285 | Godfrey LR, Jungers WL, Reed KE, Simons EL, Chatrath PS (1997) Subfossil lemurs:             |
| 286 | inferences about past and present primate communities in Madagascar. In: Goodman SM,         |
| 287 | Patterson BD (eds) Natural change and human impact in Madagascar. Smithsonian                |
| 288 | Institution Press, Washington, pp 218-256                                                    |
| 289 | Green KM (1978) Primate censusing in northern Colombia: a comparison of two techniques.      |
| 290 | Primates 19:537-550                                                                          |
| 291 | Hartwig WC, Meldrum DJ (2002) Miocene platyrrhines of the northern Neotropics. In: Hartwig   |
| 292 | WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 175-188         |
| 293 | Hodgson JA, Sterner KN, Matthews LJ, Burrell AS, Jani RA, Raaum RL, Stewart CB, Disotell     |
| 294 | TR (2009) Successive radiations, not stasis, in the South American primate fauna. Proc       |
| 295 | Natl Acad Sci 106:5534-5539                                                                  |
| 296 | Johns AD (1986) Effects of habitat disturbance on rainforest wildlife in Brazilian Amazonia. |
| 297 | World Wildlife Fund, Washington                                                              |
| 298 | Kay RF (1975) The functional adaptations of primate molar teeth. Am J Phys Anth 42:195-215   |
| 299 | Kay RF (1990) The phyletic relationships of extant and fossil Pitheciinae (Platyrrhini,      |
| 300 | Anthropoidea). J Hum Evol 19:175-208                                                         |
| 301 | Kay RF, Madden RH (1997) Paleogeography and paleoecology. In: Kay RF, Madden RH, Cifelli     |
| 302 | RL, Flynn JJ (eds) Vertebrate paleontology in the Neotropics: the Miocene fauna of La        |
| 303 | Venta, Colombia. Smithsonian Institution Press, Washington, D.C., pp 520-550.                |
| 304 | Kay RF, Ungar P (1997) Dental evidence for diet in some Miocene catarrhines with comments    |
| 305 | on the effects of phylogeny on the interpretation of adaptation. In: Begun DR, Ward CV,      |
|     | ······································                                                       |

| 306 | Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and                  |
|-----|-------------------------------------------------------------------------------------------------|
| 307 | adaptations. Plenum Press, New York, pp 131-151                                                 |
| 308 | MacPhee RDE, Horovitz I (2002) Extinct Quaternary platyrrhines of the Greater Antilles and      |
| 309 | Brazil. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press,              |
| 310 | Cambridge, pp 189-200                                                                           |
| 311 | Madden R, Guerrero J, Kay R, Flynn J, Swisher C, Walton A (1997) The La Ventan stage and        |
| 312 | age. In: Kay RF, Madden RH, Cifelli RL, Flynn JJ (eds) Vertebrate paleontology in the           |
| 313 | Neotropics: the Miocene fauna of La Venta, Colombia. Smithsonian Institution Press,             |
| 314 | Washington, D.C., pp 499-519                                                                    |
| 315 | Meldrum D, Kay R (1997) Postcranial skeletons of La Ventan platyrrhines. In: Kay RF, Madden     |
| 316 | RH, Cifelli RL, Flynn JJ (eds) Vertebrate paleontology in the Neotropics: the Miocene           |
| 317 | fauna of La Venta, Colombia. Smithsonian Institution Press, Washington, D.C., pp 459-           |
| 318 | 472                                                                                             |
| 319 | Mendes Pontes AR (1999) Environmental determinants of primate abundance in Maracá island,       |
| 320 | Roraima, Brazilian Amazonia. J Zool 247:189-199                                                 |
| 321 | Novack-Gottshall PM (2007) Using a theoretical ecospace to quantify the ecological diversity of |
| 322 | Paleozoic and modern marine biotas. Paleobiology 33:273-294                                     |
| 323 | Rosenberger AL, Tejedor MF, Cooke SB, Pekar S (2009) Platyrrhine ecophylogenetics in space      |
| 324 | and time. In: Garber PA, Estrada A, Bicca-Marques JC, Heymann EW, Strier KB (eds)               |
| 325 | South American primates: comparative perspectives in the study of behavior, ecology,            |
| 326 | and conservation. Springer, New York, pp 69-113                                                 |
| 327 | Rylands AB, Mittermeier RA (2009) The diversity of the New World primates (Platyrrhini): an     |
| 328 | annotated taxonomy. In: Garber PA, Estrada A, Bicca-Marques JC, Heymann EW, Strier              |

| 329                                                                                                                                                       | KB (eds) South American primates: comparative perspectives in the study of behavior,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 330                                                                                                                                                       | ecology, and conservation. Springer, New York, pp 23-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 331                                                                                                                                                       | Rylands AB, Schneider H, Langguth A, Mittermeier RA, Groves CP, Rodríguez-Luna E (2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 332                                                                                                                                                       | An assessment of the diversity of New World primates. Neotropical Primates 8:61-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 333                                                                                                                                                       | Schneider H, Rosenberger AL (1996) Molecules, morphology, and platyrrhine systematics. In:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 334                                                                                                                                                       | Norconk MA, Rosenberger AL, Garber PA (eds) Adaptive radiations of Neotropical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 335                                                                                                                                                       | primates. Plenum Press, New York, pp 3-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 336                                                                                                                                                       | Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 337                                                                                                                                                       | research. W. H. Freeman and Co, New York                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 338                                                                                                                                                       | Stevenson PR (1996) Censos diurnos de mamíferos y algunas aves de gran tamaño en el Parque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 339                                                                                                                                                       | Nacional Tinigua, Colombia. Universitas Scientiarum 3:67-81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 340                                                                                                                                                       | Takai M, Anaya F, Suzuki H, Shigehara N, Setoguchi T (2001) A new platyrrhine from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 341                                                                                                                                                       | middle Miocene of La Venta, Colombia, and the phyletic position of Callicebinae.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 341<br>342                                                                                                                                                | middle Miocene of La Venta, Colombia, and the phyletic position of Callicebinae.<br>109:289-308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul><li>341</li><li>342</li><li>343</li></ul>                                                                                                             | middle Miocene of La Venta, Colombia, and the phyletic position of Callicebinae.<br><u>109:289-308</u><br><u>Takemura A, Takai M, Danhara T, Setoguchi T (1992) Fission-track ages of the Villavieja</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul><li>341</li><li>342</li><li>343</li><li>344</li></ul>                                                                                                 | middle Miocene of La Venta, Colombia, and the phyletic position of Callicebinae.<br>109:289-308<br>Takemura A, Takai M, Danhara T, Setoguchi T (1992) Fission-track ages of the Villavieja<br>Formation of the Miocene Honda Group in La Venta, Department of Huila, Colombia.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> </ul>                                                                               | <ul> <li>middle Miocene of La Venta, Colombia, and the phyletic position of Callicebinae.</li> <li>109:289-308</li> <li>Takemura A, Takai M, Danhara T, Setoguchi T (1992) Fission-track ages of the Villavieja</li> <li>Formation of the Miocene Honda Group in La Venta, Department of Huila, Colombia.</li> <li>8:19-27</li> </ul>                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> </ul>                                                                  | <ul> <li>middle Miocene of La Venta, Colombia, and the phyletic position of Callicebinae.</li> <li>109:289-308</li> <li>Takemura A, Takai M, Danhara T, Setoguchi T (1992) Fission-track ages of the Villavieja</li> <li>Formation of the Miocene Honda Group in La Venta, Department of Huila, Colombia.</li> <li>8:19-27</li> <li>Ungar PS, Kay RF (1995) The dietary adaptations of European Miocene catarrhines. Proc Natl</li> </ul>                                                                                                                                                                                                                                                      |
| <ul> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> </ul>                                                     | <ul> <li>middle Miocene of La Venta, Colombia, and the phyletic position of Callicebinae.</li> <li>109:289-308</li> <li>Takemura A, Takai M, Danhara T, Setoguchi T (1992) Fission-track ages of the Villavieja</li> <li>Formation of the Miocene Honda Group in La Venta, Department of Huila, Colombia.</li> <li>8:19-27</li> <li>Ungar PS, Kay RF (1995) The dietary adaptations of European Miocene catarrhines. Proc Natl Acad Sci 92:5479-5481</li> </ul>                                                                                                                                                                                                                                |
| <ul> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> <li>348</li> </ul>                                        | <ul> <li>middle Miocene of La Venta, Colombia, and the phyletic position of Callicebinae.</li> <li>109:289-308</li> <li>Takemura A, Takai M, Danhara T, Setoguchi T (1992) Fission-track ages of the Villavieja</li> <li>Formation of the Miocene Honda Group in La Venta, Department of Huila, Colombia.</li> <li>8:19-27</li> <li>Ungar PS, Kay RF (1995) The dietary adaptations of European Miocene catarrhines. Proc Natl Acad Sci 92:5479-5481</li> <li>Van Valen L (1973) A new evolutionary law. Evol Theory 1:1-30</li> </ul>                                                                                                                                                         |
| <ul> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> <li>348</li> <li>349</li> </ul>                           | <ul> <li>middle Miocene of La Venta, Colombia, and the phyletic position of Callicebinae.</li> <li>109:289-308</li> <li>Takemura A, Takai M, Danhara T, Setoguchi T (1992) Fission-track ages of the Villavieja</li> <li>Formation of the Miocene Honda Group in La Venta, Department of Huila, Colombia.</li> <li>8:19-27</li> <li>Ungar PS, Kay RF (1995) The dietary adaptations of European Miocene catarrhines. Proc Natl Acad Sci 92:5479-5481</li> <li>Van Valen L (1973) A new evolutionary law. Evol Theory 1:1-30</li> <li>Yoder A, Yang Z (2004) Divergence dates for Malagasy lemurs estimated from multiple gene</li> </ul>                                                       |
| <ul> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> <li>348</li> <li>349</li> <li>350</li> </ul>              | <ul> <li>middle Miocene of La Venta, Colombia, and the phyletic position of Callicebinae.</li> <li>109:289-308</li> <li>Takemura A, Takai M, Danhara T, Setoguchi T (1992) Fission-track ages of the Villavieja</li> <li>Formation of the Miocene Honda Group in La Venta, Department of Huila, Colombia.</li> <li>8:19-27</li> <li>Ungar PS, Kay RF (1995) The dietary adaptations of European Miocene catarrhines. Proc Natl Acad Sci 92:5479-5481</li> <li>Van Valen L (1973) A new evolutionary law. Evol Theory 1:1-30</li> <li>Yoder A, Yang Z (2004) Divergence dates for Malagasy lemurs estimated from multiple gene loci: geological and evolutionary context. 13:757-773</li> </ul> |
| <ul> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> <li>348</li> <li>349</li> <li>350</li> <li>351</li> </ul> | <ul> <li>middle Miocene of La Venta, Colombia, and the phyletic position of Callicebinae.<br/>109:289-308</li> <li>Takemura A, Takai M, Danhara T, Setoguchi T (1992) Fission-track ages of the Villavieja<br/>Formation of the Miocene Honda Group in La Venta, Department of Huila, Colombia.<br/>8:19-27</li> <li>Ungar PS, Kay RF (1995) The dietary adaptations of European Miocene catarrhines. Proc Natl<br/>Acad Sci 92:5479-5481</li> <li>Van Valen L (1973) A new evolutionary law. Evol Theory 1:1-30</li> <li>Yoder A, Yang Z (2004) Divergence dates for Malagasy lemurs estimated from multiple gene<br/>loci: geological and evolutionary context. 13:757-773</li> </ul>        |

| aubfamily      | spacios               | site |   |   |   |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                   |   |
|----------------|-----------------------|------|---|---|---|---|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| subfamily      | species               |      | 2 | 3 | 4 | 5 | 6 | 7 | 8                                                                                                                                                                                                                                                                                                                                                                                 | 9 |
|                | Cacajao calvus        |      |   |   |   |   |   |   | Х                                                                                                                                                                                                                                                                                                                                                                                 |   |
|                | Callicebus cupreus    |      |   |   |   |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                   | Х |
| Dithagiingg    | Callicebus moloch     |      |   |   |   |   |   | х | Х                                                                                                                                                                                                                                                                                                                                                                                 |   |
| Fillecillae    | Chiropotes satanas    |      |   |   | Х |   | Х |   |                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                | Pithecia monachus     |      |   |   |   |   |   |   | Х                                                                                                                                                                                                                                                                                                                                                                                 |   |
|                | Pithecia pithecia     |      |   |   | Х |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                | Alouatta belzebul     |      |   |   |   |   | Х |   |                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                | Alouatta palliata     | Х    | Х |   |   |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                | Alouatta seniculus    |      |   | х | х | х |   | х |                                                                                                                                                                                                                                                                                                                                                                                   | х |
| Atelinae       | Ateles belzebuth      |      |   | х |   | х |   |   |                                                                                                                                                                                                                                                                                                                                                                                   | х |
|                | Ateles geoffroyi      | х    | х |   |   |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                | Ateles paniscus       |      |   |   | х |   |   | х |                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                | Lagothrix lagothricha |      |   |   |   |   |   |   | х                                                                                                                                                                                                                                                                                                                                                                                 | х |
|                | Cebus albifrons       |      |   | Х |   |   |   | х | Х                                                                                                                                                                                                                                                                                                                                                                                 |   |
|                | Cebus apella          |      |   |   | Х | Х | Х | Х |                                                                                                                                                                                                                                                                                                                                                                                   | Х |
| Cebinae        | Cebus capucinus       | Х    | Х |   |   |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                | Cebus olivaceus       |      |   |   |   | Х |   |   |                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                | Saimiri sciureus      |      |   |   | Х | Х | Х | Х | Х                                                                                                                                                                                                                                                                                                                                                                                 | Х |
| Actingo        | Aotus azarae          |      |   |   |   |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                   |   |
| Aotiliae       | Aotus trivirgatus     |      | Х |   |   |   |   | Х | 8       9         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X |   |
|                | Cebuella pygmaea      |      |   |   |   |   |   |   | Х                                                                                                                                                                                                                                                                                                                                                                                 |   |
|                | Saguinus fuscicollis  |      |   |   |   |   |   | Х | Х                                                                                                                                                                                                                                                                                                                                                                                 |   |
|                | Saguinus geoffroyi    |      | х |   |   |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                   |   |
| Callitrichinae | Saguinus imperator    |      |   |   |   |   |   | х |                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                | Saguinus leucopus     |      |   | Х |   |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                | Saguinus midas        |      |   |   | х |   | х |   |                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                | Saguinus mystax       |      |   |   |   |   |   |   | х                                                                                                                                                                                                                                                                                                                                                                                 |   |

Table 1. The species present in each of the extant communities examined in this study.

1. La Selva, Costa Rica: Fishkind & Sussman 1987; 2. Barro Colorado Island, Panama: Glanz

1990; 3. Magdalena Valley, Colombia: Green 1978; 4. Raleighvallen, Suriname: Fleagle and

Reed 1996; 5. Maraca Island, Brazil: Mendes-Pontes 1999; 6. Pucurui River, Brazil: Johns 1986;

357 7. Cocha Cashu, Peru: Fleagle and Reed 1996; 8. Jenaro Herrera, Peru: Aquino 1978; 9. Tinigua,

358 Colombia: Stevenson 1996.

|                                      | $M_1$  |                 |
|--------------------------------------|--------|-----------------|
| Species                              | length | $\mathrm{SQ}^*$ |
|                                      | (mm)   |                 |
| Alouatta belzebul <sup>2</sup>       | 7.3    | 11.5            |
| Alouatta palliata <sup>1</sup>       | 6.9    | 10.8            |
| Alouatta seniculus <sup>2</sup>      | 7.0    | 12.7            |
| <i>Aotus azarae</i> <sup>2</sup>     | 3.1    | 10.9            |
| Aotus dindensis                      | 3.2    | 4.7             |
| Aotus trivirgatus <sup>1</sup>       | 3.1    | 10.9            |
| Ateles belzebuth <sup>2</sup>        | 5.0    | -1.0            |
| Ateles geoffroyi <sup>1</sup>        | 5.3    | -2.5            |
| Ateles paniscus <sup>2</sup>         | 5.4    | -3.5            |
| Cacajao calvus <sup>2</sup>          | 4.3    | -17.2           |
| Callicebus cupreus <sup>2</sup>      | 3.2    | -4.9            |
| Callicebus moloch <sup>1</sup>       | 3.2    | -4.7            |
| Cebuella pygmaea <sup>1</sup>        | 1.8    | 0.9             |
| Cebupithecia sarmientoi <sup>1</sup> | 3.5    | -19.4           |
| Cebus albifrons <sup>2</sup>         | 4.5    | -7.2            |
| Cebus apella <sup>1</sup>            | 4.8    | -11.3           |
| Cebus capucinus <sup>2</sup>         | 4.5    | -7.7            |
| <i>Cebus olivaceus</i> <sup>2</sup>  | 4.5    | -9.6            |
| Chiropotes satanas <sup>1</sup>      | 3.6    | -15.5           |
| Lagothrix lagotricha <sup>1</sup>    | 5.5    | 1.9             |
| Mohanamico hershkovitzi <sup>1</sup> | 3.2    | -14.6           |
| Neosaimiri fieldsi <sup>1</sup>      | 2.9    | -10.3           |
| Patasola magdelenae <sup>1</sup>     | 2.5    | -7.0            |
| Pithecia monachus <sup>1</sup>       | 4.0    | -6.6            |
| Pithecia pithecia <sup>2</sup>       | 3.5    | -4.5            |
| Saguinus fuscicollis <sup>2</sup>    | 2.1    | -7.0            |
| Saguinus geoffroyi <sup>1</sup>      | 2.6    | -7.9            |
| Saguinus imperator <sup>2</sup>      | 2.5    | -11.0           |
| Saguinus leucops <sup>2</sup>        | 2.4    | -9.3            |
| Saguinus midas <sup>2</sup>          | 2.3    | -9.7            |
| Saguinus mystax <sup>1</sup>         | 2.5    | -11.9           |
| Saimiri sciureus <sup>1</sup>        | 2.9    | 6.4             |

360 Table 2. Dental measurements used in this study.

361

<sup>1</sup> Data from Fleagle et al. (1997). <sup>2</sup> Data from Currie Ketchum (2002). \*Methods for calculating

363 shearing quotients (SQs) described in Fleagle et al. (1997).

365 Table 3. Phylogenetic richness and minimum convex polygon (MCP) areas for each of the nine

| site           | # species | # genera | # subfamilies | MCP area |
|----------------|-----------|----------|---------------|----------|
| La Selva       | 3         | 3        | 2             | 0.54     |
| BCI*           | 5         | 5        | 4             | 12.06    |
| Magdalena      | 4         | 4        | 3             | 3.99     |
| Raleighvallen  | 7         | 7        | 4             | 15.42    |
| Maraca Island  | 5         | 4        | 2             | 9.34     |
| Pucurui River  | 5         | 5        | 4             | 15.63    |
| Jenerro Herera | 9         | 8        | 5             | 12.02    |
| Cocha Cashu    | 9         | 7        | 5             | 16.82    |
| Tiningua       | 7         | 7        | 4             | 13.35    |
| La Venta       | 6         | 6        | 5             | 10.36    |

366 extant and one fossil community examined in this study.

367 \* Barro Colorado Island

# **Figure captions**

| 370 | <b>Figure 1.</b> Cladistic relationships of the extant platyrrhine subfamilies (based on Hodgson et al. |
|-----|---------------------------------------------------------------------------------------------------------|
| 371 | 2009) and the placement of La Ventan taxa within those subfamilies. <u>A= Aotus dindensis</u> ; C =     |
| 372 | Cebupithecia; $S = Stirtonia$ ; $N = Neosaimiri$ ; $M = Mohanamico$ ; $P = Patasola$ .                  |
| 373 | 3                                                                                                       |
| 374 | <b>Figure 2.</b> The location of La Venta and the nine extant communities examined in this study. 1.    |
| 375 | La Selva, Costa Rica. 2. Barro Colorado Island, Panama. 3. Magdalena Valley, Colombia. 4.               |
| 376 | Raleighvallen, Suriname. 5. Maraca Island, Brazil. 6. Pucurui River, Brazil. 7. Cocha Cashu,            |
| 377 | Peru. 8. Jenaro Herrera, Peru. 9. Tinigua, Colombia.                                                    |
| 378 | 3                                                                                                       |
| 379 | <b>Figure 3.</b> An example of the method used to calculate ecological diversity for a given            |
| 380 | community. This figure shows the shearing quotients (SQs) plotted against the lengths of the first      |
| 381 | molars for the five species found in Barro Colorado, Panama. Ecological diversity was calculated        |
| 382 | as the area of the minimum convex polygon encompassing all species of the community (see                |
| 383 | Fleagle and Reed 1996).                                                                                 |
| 384 | 4                                                                                                       |
| 385 | <b>Figure 4.</b> An example of the method used to test for differences in ecological diversity between  |
| 386 | the La Ventan fossil community and the extant communities. The diagonal line is the regression          |
| 387 | line based on the equation that describes the relationship between the phylogenetic richness (i.e.,     |
| 388 | the number of taxa) of the extant communities and the area their minimum convex polygons.               |

389 Vertical lines are the vertical distance (i.e., the residual) of each community from the regression

| 390 | line. The fossil community is superimposed on the graph and is not included in the regression |
|-----|-----------------------------------------------------------------------------------------------|
| 391 | equation.                                                                                     |

| 393 | Figure 5. The relationship between the number of species at a site and the area of the site's                        |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 394 | minimum convex polygon. The La Ventan community is superimposed onto the graph.                                      |
| 395 |                                                                                                                      |
| 396 | Figure 6. The relationship between the number of genera at a site and the area of the site's                         |
| 397 | minimum convex polygon. The La Ventan community is superimposed onto the graph.                                      |
| 398 |                                                                                                                      |
| 399 | Figure 7. The relationship between the number of subfamilies at a site and the area of the site's                    |
| 400 | minimum convex polygon. The La Ventan community is superimposed onto the graph.                                      |
| 401 |                                                                                                                      |
| 402 | <b>Figure 8.</b> Scatter plot of shearing quotients (SQs) and M <sub>1</sub> lengths (a proxy for body size) for all |
| 403 | extant and fossil taxa included in the current study. Extant taxa show a greater degree of                           |
| 404 | variation in SQs at both small and large body size and slightly more variation in $M_1$ lengths. <u>A=</u>           |
| 405 | <u>Aotus dindensis;</u> C = Cebupithecia; S = Stirtonia; N= Neosaimiri; M = Mohanamico; P =                          |
| 406 | Patasola.                                                                                                            |
| 407 |                                                                                                                      |





- 420











