1,905 research outputs found

    Magnetopause mapping to the ionosphere for northward IMF

    Get PDF
    International audienceWe study the topological structure of the magnetosphere for northward IMF. Using a magnetospheric magnetic field model we study the high-latitude response to prolonged periods of northward IMF. For forced solar wind conditions we investigate the location of the polar cap region, the polar cap potential drop, and the field-aligned acceleration potentials, depending on the solar wind pressure and IMF By and Bx changes. The open field line bundles, which connect the Earth's polar ionosphere with interplanetary space, are calculated. The locations of the magnetospheric plasma domains relative to the polar ionosphere are studied. The specific features of the open field line regions arising when IMF is northward are demonstrated. The coefficients of attenuation of the solar wind magnetic and electric fields which penetrate into the magnetosphere are determined

    All-dielectric hybrid silicon/Ge2Sb2Te5 optical metasurfaces for tunable and switchable light control in the near infrared

    Get PDF
    This is the final version.We report a novel reconfigurable metasurface based on the combination of all-dielectric arrays of silicon meta-atoms, with deeply subwavelength (< λ0/150) Ge2Sb2Te5 layers. Our approach allows to selectively and individually control electric and magnetic resonances.Engineering and Physical Sciences Research Council (EPSRC

    Del Pezzo surfaces with 1/3(1,1) points

    Full text link
    We classify del Pezzo surfaces with 1/3(1,1) points in 29 qG-deformation families grouped into six unprojection cascades (this overlaps with work of Fujita and Yasutake), we tabulate their biregular invariants, we give good model constructions for surfaces in all families as degeneracy loci in rep quotient varieties and we prove that precisely 26 families admit qG-degenerations to toric surfaces. This work is part of a program to study mirror symmetry for orbifold del Pezzo surfaces.Comment: 42 pages. v2: model construction added of last remaining surface, minor corrections, minor changes to presentation, references adde

    Cluster observations of flux rope structures in the near-tail

    No full text
    International audienceAn investigation of the 2003 Cluster tail season has revealed small flux ropes in the near-tail plasma sheet of Earth. These flux ropes manifest themselves as a bipolar magnetic field signature (usually predominantly in the Z-component) associated with a strong transient peak in one or more of the other components (usually the Y-component). These signatures are interpreted as the passage of a cylindrical magnetic structure with a strong axial magnetic field over the spacecraft position. On the 2 October 2003 all four Cluster spacecraft observed a flux rope in the plasma sheet at X (GSM) ~-17 RE. The flux rope was travelling Earthward and duskward at ~160 kms-1, as determined from multi-spacecraft timing. This is consistent with the observed south-then-north bipolar BZ signature and corresponds to a size of ~0.3 RE (a lower estimate, measuring between the inflection points of the bipolar signature). The axis direction, determined from multi-spacecraft timing and the direction of the strong core field, was close to the intermediate variance direction of the magnetic field. The current inside the flux rope, determined from the curlometer technique, was predominantly parallel to the magnetic field. However, throughout the flux rope, but more significant in the outer sections, a non-zero component of current perpendicular to the magnetic field existed. This shows that the flux rope was not in a "constant a" force-free configuration, i.e. the magnetic force, JĂ—B was also non-zero. In the variance frame of the magnetic field, the components of JĂ—B suggest that the magnetic pressure force was acting to expand the flux rope, i.e. directed away from the centre of the flux rope, whereas the smaller magnetic tension force was acting to compress the flux rope. The plasma pressure is reduced inside the flux rope. A simple estimate of the total force acting on the flux rope from the magnetic forces and surrounding plasma suggests that the flux rope was experiencing an expansive total force. On 13 August 2003 all four Cluster spacecraft observed a flux rope at X (GSM) ~-18 RE. This flux rope was travelling tailward at 200 kms-1, consistent with the observed north-then-south bipolar BZ signature. The bipolar signature corresponds to a size of ~0.3 RE (lower estimate). In this case, the axis, determined from multi-spacecraft timing and the direction of the strong core field, was directed close to the maximum variance direction of the magnetic field. The current had components both parallel and perpendicular to the magnetic field, and JĂ—B was again larger in the outer sections of the flux rope than in the centre. This flux rope was also under expansive magnetic pressure forces from JĂ—B, i.e. directed away from the centre of the flux rope, and had a reduced plasma pressure inside the flux rope. A simple total force calculation suggests that this flux rope was experiencing a large expansive total force. The observations of a larger JĂ—B signature in the outer sections of the flux ropes when compared to the centre may be explained if the flux ropes are observed at an intermediate stage of their evolution after creation by reconnection at multiple X lines near the Cluster apogee. It is suggested that these flux ropes are in the process of relaxing towards the force-free like configuration often observed further down the tail. The centre of the flux ropes may contain older reconnected flux at a later evolutionary stage and may therefore be more force-free

    Extending Torelli map to toroidal compactifications of Siegel space

    Full text link
    It has been known since the 1970s that the Torelli map Mg→AgM_g \to A_g, associating to a smooth curve its jacobian, extends to a regular map from the Deligne-Mumford compactification Mˉg\bar{M}_g to the 2nd Voronoi compactification Aˉgvor\bar{A}_g^{vor}. We prove that the extended Torelli map to the perfect cone (1st Voronoi) compactification Aˉgperf\bar{A}_g^{perf} is also regular, and moreover Aˉgvor\bar{A}_g^{vor} and Aˉgperf\bar{A}_g^{perf} share a common Zariski open neighborhood of the image of Mˉg\bar{M}_g. We also show that the map to the Igusa monoidal transform (central cone compactification) is NOT regular for g≥9g\ge9; this disproves a 1973 conjecture of Namikawa.Comment: To appear in Inventiones Mathematica

    APSIS - an Artificial Planetary System in Space to probe extra-dimensional gravity and MOND

    Get PDF
    A proposal is made to test Newton's inverse-square law using the perihelion shift of test masses (planets) in free fall within a spacecraft located at the Earth-Sun L2 point. Such an Artificial Planetary System In Space (APSIS) will operate in a drag-free environment with controlled experimental conditions and minimal interference from terrestrial sources of contamination. We demonstrate that such a space experiment can probe the presence of a "hidden" fifth dimension on the scale of a micron, if the perihelion shift of a "planet" can be measured to sub-arc-second accuracy. Some suggestions for spacecraft design are made.Comment: 17 pages, revtex, references added. To appear in Special issue of IJMP

    Saturn's dayside ultraviolet auroras:Evidence for morphological dependence on the direction of the upstream interplanetary magnetic field

    Get PDF
    We examine a unique data set from seven Hubble Space Telescope (HST) "visits" that imaged Saturn's northern dayside ultraviolet emissions exhibiting usual circumpolar "auroral oval" morphologies, during which Cassini measured the interplanetary magnetic field (IMF) upstream of Saturn's bow shock over intervals of several hours. The auroras generally consist of a dawn arc extending toward noon centered near similar to 15 degrees colatitude, together with intermittent patchy forms at similar to 10 degrees colatitude and poleward thereof, located between noon and dusk. The dawn arc is a persistent feature, but exhibits variations in position, width, and intensity, which have no clear relationship with the concurrent IMF. However, the patchy postnoon auroras are found to relate to the (suitably lagged and averaged) IMF B-z, being present during all four visits with positive B-z and absent during all three visits with negative B-z. The most continuous such forms occur in the case of strongest positive B-z. These results suggest that the postnoon forms are associated with reconnection and open flux production at Saturn's magnetopause, related to the similarly interpreted bifurcated auroral arc structures previously observed in this local time sector in Cassini Ultraviolet Imaging Spectrograph data, whose details remain unresolved in these HST images. One of the intervals with negative IMF B-z however exhibits a prenoon patch of very high latitude emission extending poleward of the dawn arc to the magnetic/spin pole, suggestive of the occurrence of lobe reconnection. Overall, these data provide evidence of significant IMF dependence in the morphology of Saturn's dayside auroras
    • …
    corecore