613 research outputs found

    Semi-quantitative, duplexed qPCR assay for the detection of leishmania spp. using bisulphite conversion technology

    Full text link
    © 2019 by the authors. Leishmaniasis is caused by the flagellated protozoan Leishmania, and is a neglected tropical disease (NTD), as defined by theWorld Health Organisation (WHO). Bisulphite conversion technology converts all genomic material to a simplified form during the lysis step of the nucleic acid extraction process, and increases the efficiency of multiplex quantitative polymerase chain reaction (qPCR) reactions. Through utilization of qPCR real-time probes, in conjunction with bisulphite conversion, a new duplex assay targeting the 18S rDNA gene region was designed to detect all Leishmania species. The assay was validated against previously extracted DNA, from seven quantitated DNA and cell standards for pan-Leishmania analytical sensitivity data, and 67 cutaneous clinical samples for cutaneous clinical sensitivity data. Specificity was evaluated by testing 76 negative clinical samples and 43 bacterial, viral, protozoan and fungal species. The assay was also trialed in a side-by-side experiment against a conventional PCR (cPCR), based on the Internal transcribed spacer region 1 (ITS1 region). Ninety-seven percent of specimens from patients that previously tested positive for Leishmania were positive for Leishmania spp. with the bisulphite conversion assay, and a limit of detection (LOD) of 10 copies per PCR was achieved, while the LOD of the ITS1 methodology was 10 cells/1000 genomic copies per PCR. This method of rapid, accurate and simple detection of Leishmania can lead to improved diagnosis, treatment and public health outcomes

    Modeling oscillatory Microtubule--Polymerization

    Get PDF
    Polymerization of microtubules is ubiquitous in biological cells and under certain conditions it becomes oscillatory in time. Here simple reaction models are analyzed that capture such oscillations as well as the length distribution of microtubules. We assume reaction conditions that are stationary over many oscillation periods, and it is a Hopf bifurcation that leads to a persistent oscillatory microtubule polymerization in these models. Analytical expressions are derived for the threshold of the bifurcation and the oscillation frequency in terms of reaction rates as well as typical trends of their parameter dependence are presented. Both, a catastrophe rate that depends on the density of {\it guanosine triphosphate} (GTP) liganded tubulin dimers and a delay reaction, such as the depolymerization of shrinking microtubules or the decay of oligomers, support oscillations. For a tubulin dimer concentration below the threshold oscillatory microtubule polymerization occurs transiently on the route to a stationary state, as shown by numerical solutions of the model equations. Close to threshold a so--called amplitude equation is derived and it is shown that the bifurcation to microtubule oscillations is supercritical.Comment: 21 pages and 12 figure

    Ruptured Internal Iliac Artery Aneurysm: Staged Emergency Endovascular Treatment in the Interventional Radiology Suite

    Get PDF
    Ruptured aneurysms of the internal iliac artery (IIA) are rare and challenging to treat surgically. Due to their anatomic location they are difficult to operate on and perioperative morbidity is high. An endovascular approach can be helpful. We recently treated a patient with a ruptured IIA aneurysm in the interventional radiology suite with embolization of the side-branch of the IIA and placement of a covered stent in the ipsilateral common and external iliac arteries. A suitable stent-graft was not available initially and had to be brought in from elsewhere. An angioplasty balloon was temporarily placed across the ostium of the IIA to obtain hemostasis. Two hours later, the procedure was finished by placing the stent-graft

    Activation of Arp2/3 Complex: Addition of the First Subunit of the New Filament by a WASP Protein Triggers Rapid ATP Hydrolysis on Arp2

    Get PDF
    In response to activation by WASP-family proteins, the Arp2/3 complex nucleates new actin filaments from the sides of preexisting filaments. The Arp2/3-activating (VCA) region of WASP-family proteins binds both the Arp2/3 complex and an actin monomer and the Arp2 and Arp3 subunits of the Arp2/3 complex bind ATP. We show that Arp2 hydrolyzes ATP rapidly—with no detectable lag—upon nucleation of a new actin filament. Filamentous actin and VCA together do not stimulate ATP hydrolysis on the Arp2/3 complex, nor do monomeric and filamentous actin in the absence of VCA. Actin monomers bound to the marine macrolide Latrunculin B do not polymerize, but in the presence of phalloidin-stabilized actin filaments and VCA, they stimulate rapid ATP hydrolysis on Arp2. These data suggest that ATP hydrolysis on the Arp2/3 complex is stimulated by interaction with a single actin monomer and that the interaction is coordinated by VCA. We show that capping of filament pointed ends by the Arp2/3 complex (which occurs even in the absence of VCA) also stimulates rapid ATP hydrolysis on Arp2, identifying the actin monomer that stimulates ATP hydrolysis as the first monomer at the pointed end of the daughter filament. We conclude that WASP-family VCA domains activate the Arp2/3 complex by driving its interaction with a single conventional actin monomer to form an Arp2–Arp3–actin nucleus. This actin monomer becomes the first monomer of the new daughter filament

    Microglial inclusions and neurofilament light chain release follow neuronal α-synuclein lesions in long-term brain slice cultures.

    Get PDF
    BACKGROUND: Proteopathic brain lesions are a hallmark of many age-related neurodegenerative diseases including synucleinopathies and develop at least a decade before the onset of clinical symptoms. Thus, understanding of the initiation and propagation of such lesions is key for developing therapeutics to delay or halt disease progression. METHODS: Alpha-synuclein (αS) inclusions were induced in long-term murine and human slice cultures by seeded aggregation. An αS seed-recognizing human antibody was tested for blocking seeding and/or spreading of the αS lesions. Release of neurofilament light chain (NfL) into the culture medium was assessed. RESULTS: To study initial stages of α-synucleinopathies, we induced αS inclusions in murine hippocampal slice cultures by seeded aggregation. Induction of αS inclusions in neurons was apparent as early as 1week post-seeding, followed by the occurrence of microglial inclusions in vicinity of the neuronal lesions at 2-3 weeks. The amount of αS inclusions was dependent on the type of αS seed and on the culture's genetic background (wildtype vs A53T-αS genotype). Formation of αS inclusions could be monitored by neurofilament light chain protein release into the culture medium, a fluid biomarker of neurodegeneration commonly used in clinical settings. Local microinjection of αS seeds resulted in spreading of αS inclusions to neuronally connected hippocampal subregions, and seeding and spreading could be inhibited by an αS seed-recognizing human antibody. We then applied parameters of the murine cultures to surgical resection-derived adult human long-term neocortical slice cultures from 22 to 61-year-old donors. Similarly, in these human slice cultures, proof-of-principle induction of αS lesions was achieved at 1week post-seeding in combination with viral A53T-αS expressions. CONCLUSION: The successful translation of these brain cultures from mouse to human with the first reported induction of human αS lesions in a true adult human brain environment underlines the potential of this model to study proteopathic lesions in intact mouse and now even aged human brain environments

    An Integrative Genomic and Epigenomic Approach for the Study of Transcriptional Regulation

    Get PDF
    The molecular heterogeneity of acute leukemias and other tumors constitutes a major obstacle towards understanding disease pathogenesis and developing new targeted-therapies. Aberrant gene regulation is a hallmark of cancer and plays a central role in determining tumor phenotype. We predicted that integration of different genome-wide epigenetic regulatory marks along with gene expression levels would provide greater power in capturing biological differences between leukemia subtypes. Gene expression, cytosine methylation and histone H3 lysine 9 (H3K9) acetylation were measured using high-density oligonucleotide microarrays in primary human acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL) specimens. We found that DNA methylation and H3K9 acetylation distinguished these leukemias of distinct cell lineage, as expected, but that an integrative analysis combining the information from each platform revealed hundreds of additional differentially expressed genes that were missed by gene expression arrays alone. This integrated analysis also enhanced the detection and statistical significance of biological pathways dysregulated in AML and ALL. Integrative epigenomic studies are thus feasible using clinical samples and provide superior detection of aberrant transcriptional programming than single-platform microarray studies
    corecore