983 research outputs found

    Strategies of buenos aires waiters to enhance memory capacity in a real-life setting

    Get PDF
    Human learning and memory evaluation in real-life situations remains difficult due to uncontrolled variables. Buenos Aires waiters, who memorize all the orders without written support, were evaluated in situ. Waiters received either eight different orders and customers remained seated in their original locations (OL), or changed locations (CL). Match between orders, subjects and location was decreased only in CL. Waiters' feature/location strategy links client with position at the table and beverage later. The hypothesis we raise is that memory-schemas link working memory to long-term memory networks through rapid encoding, making the information resistant to interference and enabling its fast retrieval if necessary cues are present

    RF and IF mixer optimum matching impedances extracted by large-signal vectorial measurements

    Get PDF
    This paper introduces a new technique that allows us to measure the admittance conversion matrix of a two-port device,using a Nonlinear Vector Network Analyzer.This method is applied to extract the conversion matrix of a 0.2 µµµµm pHEMT,driven by a 4.8 GHz pump signal,at different power levels,using an intermediate frequency of 600 MHz.The issue on data inconsistency due to phase randomization among different measurements is discussed and a proper pre- processing algorithm is proposed to fix the problem. The output of this work consists of a comprehensive experimental evaluation of up-and down-conversion maximum gain,stability,and optimal RF and IF impedances

    A New Coupled CFD/Neutron Kinetics System for High Fidelity Simulations of LWR Core Phenomena: Proof of Concept

    Get PDF
    The Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT) is investigating the application of the meso- and microscale analysis for the prediction of local safety parameters for light water reactors (LWR). By applying codes like CFD (computational fluid dynamics) and SP3 (simplified transport) reactor dynamics it is possible to describe the underlying phenomena in a more accurate manner than by the nodal/coarse 1D thermal hydraulic coupled codes. By coupling the transport (SP3) based neutron kinetics (NK) code DYN3D with NEPTUNE-CFD, within a parallel MPI-environment, the NHESDYN platform is created. The newly developed system will allow high fidelity simulations of LWR fuel assemblies and cores. In NHESDYN, a heat conduction solver, SYRTHES, is coupled to NEPTUNE-CFD. The driver module of NHESDYN controls the sequence of execution of the solvers as well as the communication between the solvers based on MPI. In this paper, the main features of NHESDYN are discussed and the proof of the concept is done by solving a single pin problem. The prediction capability of NHESDYN is demonstrated by a code-to-code comparison with the DYNSUB code. Finally, the future developments and validation efforts are highlighted

    Half-String Approach to Closed String Field Theory

    Get PDF
    In this letter we present an operator formalism for Closed String Field Theory based on closed half-strings. Our results indicate that the restricted polyhedra of the classical non-polynomial string field theory, can be represented as traces of infinite matrices, with operator insertions that reparametrise the half-strings.Comment: 13 pages, Latex, OUTP 93-10-

    Electromagnetic corrections in the anomaly sector

    Full text link
    Chiral perturbation theory in the anomaly sector for Nf=2N_f=2 is extended to include dynamical photons, thereby allowing a complete treatment of isospin breaking. A minimal set of independent chiral lagrangian terms is determined and the divergence structure is worked out. There are contributions from irreducible and also from reducible one-loop graphs, a feature of ChPT at order larger than four. The generating functional is non-anomalous at order e2p4e^2p^4, but not necessarily at higher order in e2e^2. Practical applications to γπππ\gamma\pi\to\pi\pi and to the π02γ\pi^0\to2\gamma amplitudes are considered. In the latter case, a complete discussion of the corrections beyond current algebra is presented including quark mass as well as electromagnetic effects.Comment: 26 pages, 3 figure

    Simultaneous determination of afb1 and afm1 in milk samples by ultra high performance liquid chromatography coupled to quadrupole orbitrap mass spectrometry

    Get PDF
    Milk is the world’s most consumed beverage, not counting water. Even though investigations on milk aflatoxin (AF) M1 contamination are regularly conducted, there is limited information on the contamination of milk with its parent compound, AFB1. Hence, the aim of this study was to develop a quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based method for the simultaneous analysis of AFB1 and AFM1 in milk, using ultrahigh performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). The recoveries were in a range of 75–96% at 0.005, 0.01, and 0.05 µg/L spiking levels, with repeatability and reproducibility results expressed as relative standard deviations (RSDs) lower than 7% and 16%, respectively. The limits of detection (LODs) and quantification (LOQs) were 0.001 and 0.002 µg/L for AFM1 and AFB1, respectively. The LODs and LOQs that were obtained showed the suitability of the developed method for the determination of trace amounts of the selected mycotoxins in milk samples, and were up to ten times lower than those that had been reported in previous works using triple quadrupole mass analyzers. The matrix effect was evaluated and matrix-matched calibrations were used for quantification. The validated method was applied to 40 Italian milk samples. Neither AFB1 nor AFM1 were found above the LOD in any of the analyzed samples
    corecore