345 research outputs found

    Soluble polythiophenes as anticorrosive additives for marine epoxy paints

    Get PDF
    This study compares the resistance against corrosion of a marine epoxy primer modified with Zn-3(PO4)(2) (10 wt%) or a small concentration (0.3 wt%) of conducting polymer (CP) as inorganic or organic anticorrosive pigment, respectively. More specifically, the behavior of three different CPs has been evaluated: polyaniline (PAni) emeraldine base, poly(3-thiophen-3-yl-acrylic acid methyl ester) and poly(2-thiophen-3-yl-malonic acid dimethyl ester), the latter two being soluble polythiophene (PTh) derivatives bearing carboxylate side groups. In a first stage, the structural, thermal, and mechanical properties of all the modified epoxy coatings were characterized using infrared spectroscopy, thermogravimetric analyses and stress-strain assays, respectively. After this, accelerated corrosion assays have evidenced that the degree of protection imparted by a small concentration of PAni is higher than that obtained using 10wt% of Zn-3(PO4)(2). Indeed, PAni has been found to be more effective as anticorrosive additive than the two PTh derivatives. This fact has been attributed to the electroactivity of the former, which is higher than that of the latter. Thus, the ability to store charge has been proposed to be also responsible of protection against corrosion imparted by organic additives, based on CPs.Peer ReviewedPostprint (author’s final draft

    Gloss, Light Reflection and Iridescence in Ceramic Tile Enamels Containing ZrO2 and ZnO

    Get PDF
    Ceramic claddings on building facades not only present functional qualities and good resistance; they also add value to the architecture due to their qualities of light reflection, gloss and iridescence. The colour ranges produced by some enamel application techniques can vary widely. They change depending on one’s angle of vision and movement, colours in the surroundings, sunlight and their angle of incidence. In addition, the iridescent-pearl effect produced by light diffraction can lead to beautiful goniochromatic colours. This study analyses the production of square tiles of stoneware manufactured by extrusion, and their application to the Faculty of Education of the University of Alicante (FEUA) (Spain). Applying an enamel containing zirconium silicate ZrSiO4 and other metals such as Zn and Al produces iridescence-like effects. The physical-chemical properties of enamel and gloss values were characterised. A colorimetric characterisation was conducted by evaluating goniochromatic or iridescent colours, measuring the light’s spectral radiance factor, and comparing these results with other ceramic tiles of marked iridescent effects, with the presence of a final layer of anatase TiO2 enamel.This research has been funded by the project “Generation of knowledge on the multisensory interaction of the human being with the environments for the development of new products and services in the ceramic sector (4 SENSES)”, reference PSE-020400-2007-1, of the Ministry of Science and Innovation (Spain), of the Single Strategic Plan (2007–2009)

    Radon Gas in the City of Alicante. High Risk of Low Indoor Air Quality in Poorly Ventilated Buildings

    Get PDF
    In December 2019, Spain considered for the first time the presence of radon to the Technical Building Code (Basic Document HS 6: Radon Exposure Protection), although it only mentions minimum presences and the need for ventilation. This research shows that in buried structures or in places with little ventilation, even in soils with a low probability of granite, a high content of radon gas can be found. The city of Alicante has been used as a measurement location for different architectural sites; here, the level of 100 Bq/m3 is the first threshold where the gas must be monitored, and the level of 300 Bq/m3 is the maximum threshold above which corrective ventilation measures must be taken. The research conducted during the years 2015 and 2016 shows that it is necessary to account for also the areas considered to be “low presence of radon gas” to achieve healthy constructions. The renewal of air in the different places will be tested for the presence of radon, i.e., the greater the accumulation is, the less ventilation and the greater the risk of accumulation of radon gas. This study is located in the city of Alicante, where the seven civil constructions are located: two Civil War shelters, the Santa Barbara Castle, the Ereta Powder Keg, the Luceros-Marq and Serra Grossa railway tunnels and the Británica underground deposits. Radon gas is currently a concern for major health and medical agencies because it is considered to be a chemical element that is very harmful to people. The World Health Organization is one of the organisations that has the objective of studying and researching this element, to develop solutions. Radon gas is normally found in a gaseous state and is highly radioactive. It is present in many terrains and it is mostly found in those with granite; although the presence of this element is very low, there is always a minimum presence. In the past, in nongranite soils, the dose of radon was considered to be so low that it was insignificant. Therefore, in this research, the aim is to consider the high presence of radon gas in nongranite soils as long as the conditions for its accumulation are present.This work was supported by the Ministerio de Ciencia, Innovación y Universidades (Spain), project RTI2018-096219-B-I00. Project cofinanced with FEDER funds

    Healthy Climate and Energy Savings: Using Thermal Ceramic Panels and Solar Thermal Panels in Mediterranean Housing Blocks

    Get PDF
    Radiant surface conditioning systems based on capillary tube mats not only provide high standards of comfort, but they also generate substantial energy savings. These systems allow for using renewable energies such as solar thermal panels because they function with water at moderate temperatures—lower in winter and higher in summer—compared to fan-coil systems or hot water radiator systems. Moreover, in summer, they can be combined with solar cooling systems based on lithium chloride or absorption systems based on lithium bromide, which enable the cooling of water at 15–16 °C by means of solar thermal panel energy collection. This further reduces the annual energy. The purpose of this study was to examine the application of thermal ceramic panels (TCP) containing prolipropylen (PPR) capillary tube mats, in residential buildings in the Spanish Mediterranean. The water distribution system was set up individually from a heat pump and was combined with a community system of solar thermal panels. After monitoring a home over a complete one-year cycle, the annual energy demand was quantified through simulations, based on both the radiant system and the VRV system, as well as in combination with a thermal solar panel system. TCP panels reduced the annual energy demands by 31.48%, and the additional investment cost of €11,497 could be amortized over 23.31 years. The combination of TCP panels with 18.5 m2 of solar thermal panels reduced the annual energy demand by 69.47%, and the investment of €20,534 of additional cost could be amortized over 15.67 years. The energy consumptions of installation elements were also comparatively quantified.This study was part of a research project led by the Centre for Industrial Technical Development (CDTI), called “Research and design of constructive solutions for the energy improvement of buildings”, reference IDI-20110240, co-financed by the European Regional Development Fund (ERDF), requested for the period 2011–2013 by ECISA, General Company of Constructions S.A., based on an agreement (Reference ECISA1-10Y) with the University of Alicante

    Una vida en la Universidad de Chile: celebrando al profesor Antonio Bascuñán Valdés

    Get PDF
    Palabras a nombre del Comité Editorial y del equipo de Coordinadores del libro a cargo de Lucas Sierr

    The Radon Gas in Underground Buildings in Clay Soils. The Plaza Balmis Shelter as a Paradigm

    Get PDF
    In healthy buildings, it is considered essential to quantify air quality. One of the most fashionable indicators is radon gas. To determine the presence of this element, which is harmful to health, in the environment, the composition of the soil is studied. The presence of radon gas within a building depends both on the terrain in which it is located and on the composition of the materials of which it is composed, and not as was previously believed, only by the composition of the soil (whether granitic or not). Many countries are currently studying this phenomenon, including Spain where the building regulations regarding the accumulation of radon gas, do not list in their technical codes, the maximum dose that can a building can hold so that it is not harmful to people and the measures to correct excessive accumulation. Therefore, once the possible existence of radon in any underground building has been verified, regardless of the characteristics of the soil, the importance of defining and unifying the regulations on different levels of radon in all architectural constructions is evident. Medical and health science agencies, including the World Health Organization, consider that radon gas is a very harmful element for people. This element, in its gaseous state, is radioactive and it is present in almost soils in which buildings are implanted. Granitic type soils present higher levels of radon gas. Non-granitic soils have traditionally been considered to have very low radon levels. However, this paper demonstrates the relevant presence of radon in non-granitic soils, specifically in clayey soils, by providing the results of research carried out in the underground air raid shelter at Balmis Square in Alicante (Spain). The results of the measurements of radon accumulation in the Plaza Balmis shelter are five times higher than those obtained in a similar ungrounded building. This research addresses the constructive typology of an under-ground building and the radon presence in its interior obtained using rigorous measurement techniques.The authors of this paper thanks the University Institute of Water and Environmental Sciences of the University of Alicante for supporting this research

    The Importance of Checking Indoor Air Quality in Underground Historic Buildings Intended for Tourist Use

    Get PDF
    This article demonstrates the importance of quantifying the air quality with radon gas level as indicator in any heritage building, especially those intended for the use of people. The tourist activity or historical guide represents a typology where people spend a certain time, that is to say, in no case do they spend the same amount of hours as in their homes or jobs. Different gases that may be present in the environment must be controlled. The Séneca Square shelter, in Alicante, is a very important place for the history of the city during the Spanish Civil War that has recently been rehabilitated for exposure to people. The source of most radon gas inside a building is the ground. Many countries, including Spain, in which the building regulations, regarding the accumulation of radon gas, do not specify in their technical codes, the maximum dose that a building can sustain so that it is not harmful to people, or, the measures required to correct excessive accumulation. The possible existence of radon is verified in any underground building, regardless of the characteristics of the soil (whether granitic or not), the importance of defining and unifying the regulations that specify the different levels of radon in any architectural constructions is evident. Most of the scientific agencies in the field of medicine and health, consider that radon gas is a very harmful element for people. This element in its gaseous state is radioactive and it is present in almost all soils in which buildings are implanted, with granitic types of soil presenting higher levels of radon gas. Non-granitic soils have traditionally been considered to have very low radon levels. However, this work, providing the results of the research carried out in the underground air raid shelter in Seneca Square in Alicante (Spain), demonstrates the relevant presence of radon in non-granitic soils. This research addresses the constructive typology of the underground building and the radon presence in its interior obtained using rigorous measurement techniques

    Utilización de heurísticas en las etapas de diseño de procesos para el diseño de sistemas de recuperación de hidrógeno

    Get PDF
    En este trabajo abordamos el estudio de nuevas estructuras de reciclos y sistemas de recuperación de hidrógeno, que se generan al incluir el concepto de redes de intercambio de materia (MENs) en la toma de decisiones de diseño. Cuando se diseña un proceso siguiendo la jerarquía de decisiones de Douglas (1985), se avanza en el diseño generando versiones más detalladas del proceso con un número creciente de bloques de proceso interconectados por corrientes. Al final del procedimiento, se realiza una integración de calor entre las corrientes del proceso ya definidas en las etapas anteriores. Por otra parte, las técnicas de síntesis de MENs, se utilizan para decidir sobre intercambios de materia entre las corrientes de un proceso una vez que todas estas han sido definidas. Sin embargo, el concepto de MENs puede usarse en una etapa anterior de la jerarquía de Douglas, generando estructuras y sistemas de separación alternativos.In this paper, we study new recycles structures and hydrogen recovery systems, which are generated by including the concept of mass exchange networks (MENs) in taking design decisions. When designing a process following the hierarchy of decision by Douglas (1985) advances in the design generating more detailed versions of the process with an increasing number of blocks interconnected by process streams. At the end of the procedure, is an integration of heat between the process streams already defined in previous stage. On the other hand, the synthesis techniques of MENs are used to decide on the exchange of mass between process streams once these have been defined. However, the concept MENs can be used at an earlier stage in the hierarchy of Douglas, generating structures and separation systems alternatives.Fil: Fischer, Carlos Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina. Universidad Tecnológica Nacional. Facultad Regional Reconquista; ArgentinaFil: Iribarren, Oscar Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina. Universidad Tecnológica Nacional. Facultad Regional Reconquista; Argentin
    corecore