136 research outputs found
Strategies to reduce sample sizes in Alzheimer’s disease primary and secondary prevention trials using longitudinal amyloid PET imaging
BACKGROUND: Detecting subtle-to-moderate biomarker changes such as those in amyloid PET imaging becomes increasingly relevant in the context of primary and secondary prevention of Alzheimer's disease (AD). This work aimed to determine if and when distribution volume ratio (DVR; derived from dynamic imaging) and regional quantitative values could improve statistical power in AD prevention trials. METHODS: Baseline and annualized % change in [11C]PIB SUVR and DVR were computed for a global (cortical) and regional (early) composite from scans of 237 cognitively unimpaired subjects from the OASIS-3 database ( www.oasis-brains.org ). Bland-Altman and correlation analyses were used to assess the relationship between SUVR and DVR. General linear models and linear mixed effects models were used to determine effects of age, sex, and APOE-ε4 carriership on baseline and longitudinal amyloid burden. Finally, differences in statistical power of SUVR and DVR (cortical or early composite) were assessed considering three anti-amyloid trial scenarios: secondary prevention trials including subjects with (1) intermediate-to-high (Centiloid > 20.1), or (2) intermediate (20.1 < Centiloid ≤ 49.4) amyloid burden, and (3) a primary prevention trial focusing on subjects with low amyloid burden (Centiloid ≤ 20.1). Trial scenarios were set to detect 20% reduction in accumulation rates across the whole population and in APOE-ε4 carriers only. RESULTS: Although highly correlated to DVR (ρ = .96), cortical SUVR overestimated DVR cross-sectionally and in annual % change. In secondary prevention trials, DVR required 143 subjects per arm, compared with 176 for SUVR. Both restricting inclusion to individuals with intermediate amyloid burden levels or to APOE-ε4 carriers alone further reduced sample sizes. For primary prevention, SUVR required less subjects per arm (n = 855) compared with DVR (n = 1508) and the early composite also provided considerable sample size reductions (n = 855 to n = 509 for SUVR, n = 1508 to n = 734 for DVR). CONCLUSION: Sample sizes in AD secondary prevention trials can be reduced by the acquisition of dynamic PET scans and/or by restricting inclusion to subjects with intermediate amyloid burden or to APOE-ε4 carriers only. Using a targeted early composite only leads to reductions of sample size requirements in primary prevention trials. These findings support strategies to enable smaller Proof-of-Concept Phase II clinical trials to better streamline drug development
Strategies to reduce sample sizes in Alzheimer’s disease primary and secondary prevention trials using longitudinal amyloid PET imaging
BACKGROUND: Detecting subtle-to-moderate biomarker changes such as those in amyloid PET imaging becomes increasingly relevant in the context of primary and secondary prevention of Alzheimer's disease (AD). This work aimed to determine if and when distribution volume ratio (DVR; derived from dynamic imaging) and regional quantitative values could improve statistical power in AD prevention trials. METHODS: Baseline and annualized % change in [11C]PIB SUVR and DVR were computed for a global (cortical) and regional (early) composite from scans of 237 cognitively unimpaired subjects from the OASIS-3 database ( www.oasis-brains.org ). Bland-Altman and correlation analyses were used to assess the relationship between SUVR and DVR. General linear models and linear mixed effects models were used to determine effects of age, sex, and APOE-ε4 carriership on baseline and longitudinal amyloid burden. Finally, differences in statistical power of SUVR and DVR (cortical or early composite) were assessed considering three anti-amyloid trial scenarios: secondary prevention trials including subjects with (1) intermediate-to-high (Centiloid > 20.1), or (2) intermediate (20.1 < Centiloid ≤ 49.4) amyloid burden, and (3) a primary prevention trial focusing on subjects with low amyloid burden (Centiloid ≤ 20.1). Trial scenarios were set to detect 20% reduction in accumulation rates across the whole population and in APOE-ε4 carriers only. RESULTS: Although highly correlated to DVR (ρ = .96), cortical SUVR overestimated DVR cross-sectionally and in annual % change. In secondary prevention trials, DVR required 143 subjects per arm, compared with 176 for SUVR. Both restricting inclusion to individuals with intermediate amyloid burden levels or to APOE-ε4 carriers alone further reduced sample sizes. For primary prevention, SUVR required less subjects per arm (n = 855) compared with DVR (n = 1508) and the early composite also provided considerable sample size reductions (n = 855 to n = 509 for SUVR, n = 1508 to n = 734 for DVR). CONCLUSION: Sample sizes in AD secondary prevention trials can be reduced by the acquisition of dynamic PET scans and/or by restricting inclusion to subjects with intermediate amyloid burden or to APOE-ε4 carriers only. Using a targeted early composite only leads to reductions of sample size requirements in primary prevention trials. These findings support strategies to enable smaller Proof-of-Concept Phase II clinical trials to better streamline drug development
Accurate risk estimation of β-amyloid positivity to identify prodromal Alzheimer's disease: Cross-validation study of practical algorithms
INTRODUCTION: The aim was to create readily available algorithms that estimate the individual risk of β-amyloid (Aβ) positivity. METHODS: The algorithms were tested in BioFINDER (n = 391, subjective cognitive decline or mild cognitive impairment) and validated in Alzheimer's Disease Neuroimaging Initiative (n = 661, subjective cognitive decline or mild cognitive impairment). The examined predictors of Aβ status were demographics; cognitive tests; white matter lesions; apolipoprotein E (APOE); and plasma Aβ₄₂/Aβ₄₀, tau, and neurofilament light. RESULTS: Aβ status was accurately estimated in BioFINDER using age, 10-word delayed recall or Mini–Mental State Examination, and APOE (area under the receiver operating characteristics curve = 0.81 [0.77–0.85] to 0.83 [0.79–0.87]). When validated, the models performed almost identical in Alzheimer's Disease Neuroimaging Initiative (area under the receiver operating characteristics curve = 0.80–0.82) and within different age, subjective cognitive decline, and mild cognitive impairment populations. Plasma Aβ₄₂/Aβ₄₀ improved the models slightly. DISCUSSION: The algorithms are implemented on http://amyloidrisk.com where the individual probability of being Aβ positive can be calculated. This is useful in the workup of prodromal Alzheimer's disease and can reduce the number needed to screen in Alzheimer's disease trials
Preclinical effects of APOE epsilon 4 on cerebrospinal fluid A beta 42 concentrations
Background:
From earlier studies it is known that the APOE ε2/ε3/ε4 polymorphism modulates the concentrations of cerebrospinal fluid (CSF) beta-amyloid1–42 (Aβ42) in patients with cognitive decline due to Alzheimer’s disease (AD), as well as in cognitively healthy controls. Here, in a large cohort consisting solely of cognitively healthy individuals, we aimed to evaluate how the effect of APOE on CSF Aβ42 varies by age, to understand the association between APOE and the onset of preclinical AD. //
Methods:
APOE genotype and CSF Aβ42 concentration were determined in a cohort comprising 716 cognitively healthy individuals aged 17–99 from nine different clinical research centers. //
Results:
CSF concentrations of Aβ42 were lower in APOE ε4 carriers than in noncarriers in a gene dose-dependent manner. The effect of APOE ε4 on CSF Aβ42 was age dependent. The age at which CSF Aβ42 concentrations started to decrease was estimated at 50 years in APOE ε4-negative individuals and 43 years in heterozygous APOE ε4 carriers. Homozygous APOE ε4 carriers showed a steady decline in CSF Aβ42 concentrations with increasing age throughout the examined age span. //
Conclusions:
People possessing the APOE ε4 allele start to show a decrease in CSF Aβ42 concentration almost a decade before APOE ε4 noncarriers already in early middle age. Homozygous APOE ε4 carriers might deposit Aβ42 throughout the examined age span. These results suggest that there is an APOE ε4-dependent period of early alterations in amyloid homeostasis, when amyloid slowly accumulates, that several years later, together with other downstream pathological events such as tau pathology, translates into cognitive decline
Attachment and coping in psychosis in relation to spiritual figures
Background: Studies have found higher levels of insecure attachment in individuals with schizophrenia. Attachment theory provides a framework necessary for conceptualizing the development of interpersonal functioning. Some aspects of the attachment of the believer to his/her spiritual figure are similar to those between the child and his/her parents. The correspondence hypothesis suggests that early child-parent interactions correspond to a person's relation to a spiritual figure. The compensation hypothesis suggests that an insecure attachment history would lead to a strong religiousness/spirituality as a compensation for the lack of felt security. The aim of this study is to explore attachment models in psychosis vs. healthy controls, the relationships between attachment and psychopathology and the attachment processes related to spiritual figures.
Methods: Attachment models were measured in 30 patients with psychosis and 18 controls with the AAI (Adult Attachment interview) in relationship with psychopathology. Beliefs and practices related to a spiritual figure were investigated by qualitative and quantitative analyses.
Results: Patients with psychosis showed a high prevalence of insecure avoidant attachment. Spiritual entities functioned like attachment figures in two thirds of cases. Interviews revealed the transformation of internal working models within relation to a spiritual figure: a compensation process was found in 7 of the 32 subjects who showed a significant attachment to a spiritual figure.
Conclusions: Attachment theory allows us to highlight one of the underlying dimensions of spiritual coping in patients with psychosis
Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis.
Molecular, genetic and pathological evidence suggests that deficits in GABAergic parvalbumin-positive interneurons contribute to schizophrenia pathophysiology through alterations in the brain's excitation-inhibition balance that result in impaired behaviour and cognition. Although the factors that trigger these deficits are diverse, there is increasing evidence that they converge on a common pathological hub that involves NMDA receptor hypofunction and oxidative stress. These factors have been separately linked to schizophrenia pathogenesis, but evidence now suggests that they are mechanistically interdependent and contribute to a common schizophrenia-associated pathology
A Brain Region-Specific Predictive Gene Map for Autism Derived by Profiling a Reference Gene Set
Molecular underpinnings of complex psychiatric disorders such as autism spectrum disorders (ASD) remain largely unresolved. Increasingly, structural variations in discrete chromosomal loci are implicated in ASD, expanding the search space for its disease etiology. We exploited the high genetic heterogeneity of ASD to derive a predictive map of candidate genes by an integrated bioinformatics approach. Using a reference set of 84 Rare and Syndromic candidate ASD genes (AutRef84), we built a composite reference profile based on both functional and expression analyses. First, we created a functional profile of AutRef84 by performing Gene Ontology (GO) enrichment analysis which encompassed three main areas: 1) neurogenesis/projection, 2) cell adhesion, and 3) ion channel activity. Second, we constructed an expression profile of AutRef84 by conducting DAVID analysis which found enrichment in brain regions critical for sensory information processing (olfactory bulb, occipital lobe), executive function (prefrontal cortex), and hormone secretion (pituitary). Disease specificity of this dual AutRef84 profile was demonstrated by comparative analysis with control, diabetes, and non-specific gene sets. We then screened the human genome with the dual AutRef84 profile to derive a set of 460 potential ASD candidate genes. Importantly, the power of our predictive gene map was demonstrated by capturing 18 existing ASD-associated genes which were not part of the AutRef84 input dataset. The remaining 442 genes are entirely novel putative ASD risk genes. Together, we used a composite ASD reference profile to generate a predictive map of novel ASD candidate genes which should be prioritized for future research
What Do We Know About Neuropsychological Aspects Of Schizophrenia?
Application of a neuropsychological perspective to the study of schizophrenia has established a number of important facts about this disorder. Some of the key findings from the existing literature are that, while neurocognitive impairment is present in most, if not all, persons with schizophrenia, there is both substantial interpatient heterogeneity and remarkable within-patient stability of cognitive function over the long-term course of the illness. Such findings have contributed to the firm establishment of neurobiologic models of schizophrenia, and thereby help to reduce the social stigma that was sometimes associated with purely psychogenic models popular during parts of the 20th century. Neuropsychological studies in recent decades have established the primacy of cognitive functions over psychopathologic symptoms as determinants of functional capacity and independence in everyday functioning. Although the cognitive benefits of both conventional and even second generation antipsychotic medications appear marginal at best, recognition of the primacy of cognitive deficits as determinants of functional disability in schizophrenia has catalyzed recent efforts to develop targeted treatments for the cognitive deficits of this disorder. Despite these accomplishments, however, some issues remain to be resolved. Efforts to firmly establish the specific neurocognitive/neuropathologic systems responsible for schizophrenia remain elusive, as do efforts to definitively demonstrate the specific cognitive deficits underlying specific forms of functional impairment. Further progress may be fostered by recent initiatives to integrate neuropsychological studies with experimental neuroscience, perhaps leading to measures of deficits in cognitive processes more clearly associated with specific, identifiable brain systems
Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing
The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes
- …